UNIVERSIDAD PRIVADA DE TACNA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS

"EVALUACIÓN DE CRITERIOS DE LOS PARÁMETROS DE DOTACIÓN Y SU INFLUENCIA EN EL DISEÑO PARA SISTEMAS DE REDES DE AGUA POTABLE EN LA CIUDAD DE TACNA - 2018"

PARA OPTAR:

TÍTULO PROFESIONAL DE INGENIERO CIVIL

PRESENTADO POR:

Bach. Lady Jazmin Huamán Pilco

Bach. Carlo Hery Perez Vargas

TACNA – PERÚ 2019

UNIVERSIDAD PRIVADA DE TACNA

FACULTAD DE INGENIERIA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis

"EVALUACIÓN DE CRITERIOS DE LOS PARÁMETROS DE DOTACIÓN Y SU INFLUENCIA EN EL DISEÑO PARA SISTEMAS DE REDES DE AGUA POTABLE EN LA CIUDAD DE TACNA - 2018"

Tesis sustentada y aprobada el 02 de julio del 2019; estando el jurado calificador integrado por:

PRESIDENTE:

ING. ROSEMARY POLDY BEGAZO SALAS

SECRETARIO:

ING. JIMMI YURY SILVA CHARAJA

VOCAL:

ING. RUBEN RAMOS HUME

ASESOR:

ING. ULIANOV FARFAN KEHUARUCHO

DECLARACION JURADA DE ORIGINALIDAD

Yo Huamán Pilco, Lady Jazmín y Perez Vargas, Carlo Hery, en calidad de Bachilleres de la Escuela Profesional de Ingeniería Civil de la Facultad de Ingeniería de la Universidad Privada de Tacna, identificados con DNI 72212398 y 74280481 Declaramos bajo juramento que:

- Ser autores de la tesis titulada "Evaluación de criterios de los parámetros de dotación y su influencia en el diseño para sistemas de redes de agua potable en la Ciudad de Tacna - 2018"; la misma que presentamos para optar el Título Profesional de Ingeniero Civil.
- 2. La tesis no ha sido plagiada ni total ni parcialmente, para la cual se han respetado las normas internacionales de citas y referencias para las fuentes consultadas.
- 3. La tesis presentada no atenta contra derechos de terceros.
- 4. La tesis no ha sido publicada ni presentada anteriormente para obtener algún grado académico previo o título profesional.
- 5. Los datos presentados en los resultados son reales, no han sido falsificados, ni duplicados, ni copiados.

Por lo expuesto, mediante el presente asumimos frente a LA UNIVERSIDAD cualquier responsabilidad que pudiera derivarse por la autoría, originalidad y veracidad del contenido de la tesis, así como por los derechos sobre la obra y/o invención presentada. En consecuencia, nos hacemos responsable frente a LA UNIVERSIDAD y a terceros, de cualquier daño que pudiera ocasionar, por el incumplimiento de lo declarado o que pudiera encontrar como causa del trabajo presentado, asumiendo todas las cargas pecuniarias que pudieran derivarse de ello en favor de terceros con motivo de acciones, reclamaciones o conflictos derivados del incumplimiento de lo declarado o las que encontrasen causa en el contenido de la tesis, libro y/o invento.

De identificarse fraude, piratería, plagio, falsificación o que el trabajo de investigación haya sido publicado anteriormente; asumimos las consecuencias y sanciones que de nuestras acciones se deriven, sometiéndonos a la normatividad vigente de la Universidad Privada de Tacna.

Tacna, Julio del 2019

Huamán Pilco, Lady Jazmín

DNI: 72212398

Perez Vargas, Carlo Hery

DNI: 74280481

DEDICATORIA

A Dios, quien con su bendición me permitió concluir con éxito mi carrera profesional, y que me permite avanzar firmemente en lo q me propongo.

A mis padres, José y Gladys, por su apoyo incondicional en todas mis metas, por sus palabras de motivación que me brindaron siempre, por los consejos que me sirvieron de mucho en mi vida diaria y estudiantil, por su fortaleza que transmiten y por todo el amor que me brindan.

A mis abuelitos, Mario y Asunta, que son como mis segundos padres, les agradezco por sus oraciones y a su cariño me siento inspirada en conseguir sus objetivos.

A mis tíos, Felipe y Celia, por sus palabras de aliento, y por ese cariño que me tienen.

Lady Jazmín Huamán Pilco

DEDICATORIA

A mis padres, que siempre me dieron lo mejor de ellos, aunque ya no estén conmigo, sus esfuerzos me dan fuerzas para seguir adelante.

A mis abuelos, Justo y Teofila que me educaron con sus valores y principios para ser una buena persona.

A mis Tíos, Gladys y Victor, que a pesar de mis errores me siguen apoyando y aconsejando para seguir creciendo profesionalmente.

Carlo Hery Perez Vargas

AGRADECIMIENTOS

Agradecimientos a Dios por cuidarnos a lo largo de nuestras vidas y permitiéndonos alcanzar uno más de nuestros objetivos, que es obtener el título de ingeniero civil.

Agradecimientos a nuestras familias por el apoyo brindado desde que iniciamos la carrera en la universidad, sus consejos y palabras de aliento nos han brindado las fuerzas para superar cada prueba puesta a lo largo de la carrera.

Agradecemos a nuestros docentes de la Escuela de Ingeniería Civil de la Universidad Privada de Tacna, por haber compartido sus conocimientos a lo largo de la preparación para ser buenos profesionales.

¡Gracias a ustedes!

INDICE GENERAL

DEDICATOR	RIA	3
AGRADECI	MIENTOS	5
INDICE GEN	NERAL	6
INDICE DE I	FIGURAS	9
INDICE DE	TABLAS	11
INDICE DE	ANEXOS	14
RESUMEN.		15
ABSTRACT		17
INTRODUC	CION	19
CAPITULO I	: PLANTEAMIENTO DEL PROBLEMA	21
1.1. Descri	pción del problema	21
1.2. Formu	ılación del problema	23
1.2.1.	Problema General	23
1.2.2.	Problemas Específicos	23
1.3. Justific	cación e importancia	24
1.4. Objetiv	vos	27
1.4.1.	Objetivo general	27
1.4.2.	Objetivos específicos	27
1.5. Hipóte	esis	27
1.5.1.	Hipótesis general	27
1.5.2.	Hipótesis especificas	27
CAPITULO I	I: MARCO TEORICO	28
2.1. Antece	edentes del estudio	28
2.1.1.	A nivel internacional	28
2.1.2.	A nivel nacional	30
2.1.3.	A nivel local	31
2.2. Bases	teóricas	32
2.2.1. Técnio	cas de muestreo	32
2.2.1.1.	Encuesta	32
2.2.1.2.	Lectura de medidores	33
2.2.1.3.	Información Histórica de Consumo de Agua Potable	33
2.2.2. Cifras	de consumo de agua potable	34
2.2.3. Factor	es que intervienen en el consumo de agua	37

	2.2.3.1.	Tipos de consumo	37
	2.2.3.2.	Factores socioeconómicos	37
	2.2.3.3.	Factores meteorológicos	41
	2.2.3.4.	Balance Hídrico	41
2.2.4	I. Servici	io de agua potable en la ciudad de Tacna	42
	2.2.4.1.	Sistema de Agua Potable de la Ciudad de Tacna	43
	2.2.4.2.	Sistema de Captación	43
	2.2.4.3.	Líneas de Conducción	44
	2.2.4.4.	Plantas de Tratamiento	44
	2.2.4.5.	Almacenamiento de Agua Potable	45
	2.2.4.6.	Sectorización Operacional	49
2.2.5	5. Diseño	de redes de agua potable	49
	2.2.5.1.	Parámetros de Diseño	49
	2.2.5.2.	Variaciones de consumo	53
	2.2.5.3.	Caudales de diseño	53
	2.2.5.4.	Redes de distribución	54
2.2.6	8. Análisi	s de precios unitarios	59
	2.2.6.1.	Excavación	60
	2.2.6.2.	Relleno de zanjas	61
2.2.7	. Metrac	dos	63
2.3.	Definio	ción de términos	64
CAP	ITULO I	II: MARCO METODOLOGICO	65
3.1.	Tipo y	diseño de la investigación	65
	3.1.1.	Tipo de investigación	65
	3.1.2.	Diseño de la investigación	65
3.2.	Poblac	ción y/o muestra de estudio	65
	3.2.1.	Población y/o muestra de estudios	65
3.3.	Opera	cionalización de variables	65
3.4.	Técnic	as e instrumentos para la recolección de datos	67
3.5.	Proces	samiento y análisis de datos	69
CAP	ITULO I	V: RESULTADOS	71
4.1.	Gener	alidades	71
4.2.	Demar	nda de los Servicios de agua potable	71
4.3.	Presió	n y continuidad del servicio	78
4.4.	Nivel s	socioeconómico	81
4.5.	Encue	stas	81

4.6.	Consumos mensuales EPS Tacna S.A	97
4.7.	Población servida de agua potable	103
4.8.	Volúmenes facturados de agua potable	103
4.9.	Consumo por habitante	103
4.10.	Resultados del estudio de dotación	104
4.11.	Análisis de información	105
4.12.	Modelamiento de las redes de agua potable con software - WATERO 106	SEMS
4	4.12.1. Características de las redes	107
4	4.12.2. Resultados obtenidos con el programa WATERGEMS	107
4.13.	Comparación de presupuestos	113
CAPI	TULO V: DISCUSION	116
CON	CLUSIONES	119
REC	OMENDACIONES	121
REFE	ERENCIAS BIBLIOGRAFICAS	123

INDICE DE FIGURAS

Figura 1. Dotación de agua21
Figura 2. Determinación de la dotación de agua de diseño
Figura 3. Dotación
Figura 4. Ahorro de agua35
Figura 5. Ámbito de prestación de la EPS TACNA S.A42
Figura 6. Esquema General de la Red de Agua Potable en Tacna48
Figura 7. Esquema del sistema de abastecimiento de agua potable en la ciudad
de Tacna49
Figura 8. Tipos de redes de distribución56
Figura 9. Dimensiones de zanja
Figura 10. Plantilla de encuestas
Figura 11. Conexiones de uso activas e inactivas de agua potable73
Figura 12. Histograma de dotación de acuerdo al nivel socioeconómico81
Figura 13. Ubicación de viviendas en el cercado de Tacna – Parte 182
Figura 14. Ubicación de viviendas en el cercado de Tacna – Parte 282
Figura 15. Histograma de criterios de consumo en el cercado de Tacna83
Figura 16. Ubicación de viviendas en el distrito de Alto de la Alianza85
Figura 17. Histograma de criterios de consumo en el distrito Alto de la Alianza 86
Figura 18. Ubicación de viviendas en el distrito de Ciudad Nueva – Parte 187
Figura 19. Ubicación de viviendas en el distrito de Ciudad Nueva – Parte 288
Figura 20. Ubicación de viviendas en el distrito de Ciudad Nueva – Parte 388
Figura 21. Histograma de criterios de consumo en el distrito Ciudad Nueva89
Figura 22. Ubicación de viviendas en el distrito de Pocollay91
Figura 23. Histograma de criterios de consumo en el distrito de Pocollay92
Figura 24. Ubicación de viviendas en el distrito de Gregorio Albarracín Lanchipa – Parte 1
Figura 25. Ubicación de viviendas en el distrito de Gregorio Albarracín Lanchipa – Parte 2
Figura 26. Ubicación de viviendas en el distrito de Gregorio Albarracín Lanchipa – Parte 394
Figura 27. Ubicación de viviendas en el distrito de Gregorio Albarracín Lanchipa – Parte 4

Figura 28. Histograma de criterios de consumo en el distrito de Grego	gorio
Albarracín Lanchipa	96
Figura 29. Ubicación de nudos	108
Figura 30. Ubicación de las tuberías	110

INDICE DE TABLAS

Tabla 1. Dotación por número de habitantes 25
Tabla 2. Dotación por región
Tabla 3. Dotación diaria por habitante de acuerdo al clima 26
Tabla 4. Dotación por habitante según el nivel de complejidad del sistema29
Tabla 5. Promedio del consumo de agua potable estimado por clima predominante
Tabla 6. Asignación Máxima de Consumo
Tabla 7. Consumo doméstico
Tabla 8. Promedio de Consumo
Tabla 9. Evaluación de los Niveles Socioeconómicos 40
Tabla 10. Balance Hídrico propuesto por International Water Asotiation (IWA)41
Tabla 11. Coeficientes de fricción "C" en la fórmula de Hazen y Williams57
Tabla 12. Ancho de zanja61
Tabla 13. Matriz de Operacionalización de Variables 67
Tabla 14. Principales indicadores de gestión de la EPS TACNA S.A. 72
Tabla 15. Conexiones de uso activas e inactivas de agua potable hasta agosto2018
Tabla 16. Conexiones de uso activas de agua potable hasta diciembre 201873
Tabla 17. Conexiones de uso activas de agua potable por categoría hasta agosto 2018
Tabla 18. Conexiones de uso activas de agua potable por categoría hasta diciembre 2018
Tabla 19. Conexiones de uso activas del servicio de agua potable, por tipo de facturación hasta agosto 2018
Tabla 20. Conexiones de uso activas del servicio de agua potable, por tipo de facturación hasta diciembre 2018
Tabla 21. Conexiones de uso activas del servicio de agua potable, por facturación y categoría de usuario hasta agosto del 2018
Tabla 22. Conexiones de uso activas del servicio de agua potable, por facturación y categoría de usuario a septiembre del 2018
Tabla 23. Conexiones de uso activas del servicio de agua potable, por facturación y categoría de usuario a octubre del 2018

Tabla 24. Conexiones de uso activas del servicio de agua potable, por facturación y categoría de usuario a noviembre del 2018
Tabla 25. Conexiones de uso activas del servicio de agua potable, por facturación y categoría de usuario a diciembre del 2018
Tabla 26. Continuidad promedio mensual por sectores en el primer semestre del 2018 78
Tabla 27. Presión Promedio mensual por sectores en el primer semestre del 2018
Tabla 28. Dotación de acuerdo al nivel socioeconómico 81
Tabla 29. Consumo de agua promedio en base a criterios en el cercado de Tacna
Tabla 30. Dotación según encuestas en el cercado de Tacna 84
Tabla 31. Consumo de agua promedio en base a criterios en el distrito de Alto de la Alianza 85
Tabla 32. Dotación según encuestas en el distrito de Alto de la Alianza86
Tabla 33. Consumo de agua promedio en base a criterios en el distrito de Ciudad Nueva 89
Tabla 34. Dotación según encuestas en el distrito de Ciudad Nueva 90
Tabla 35. Consumo de agua promedio en base a criterios en el distrito de Pocollay
Tabla 36. Dotación según encuestas en el distrito de Pocollay 92
Tabla 37. Consumo de agua promedio en base a criterios en el distrito de Gregorio Albarracín Lanchipa 95
Tabla 38. Dotación según encuestas en el distrito de Gregorio Albarracín Lanchipa
Tabla 39. Dotación según consumos de la EPS Tacna en el cercado de Tacna98
Tabla 40. Dotación según consumos de la EPS Tacna en el distrito de Alto de laAlianza99
Tabla 41. Dotación según consumos de la EPS Tacna en el distrito de CiudadNueva100
Tabla 42. Dotación según consumos de la EPS Tacna en el distrito de Pocollay 101
Tabla 43. Dotación según consumos de la EPS Tacna en el distrito de GregorioAlbarracín Lanchipa102
Tabla 44. Volúmenes facturados
Tabla 45. Consumo por habitante
Tabla 46. Dotación por distrito

Tabla 47. Comparación de caudales	106
Tabla 48. Presiones obtenidas en los nudos con el caudal de diseño del e técnico aprobado	•
Tabla 49. Presiones obtenidas en los nudos con el caudal de diseño de lo realizados	
Tabla 50. Velocidades y caudales obtenidos en las tuberías con el cauda del expediente técnico aprobado	
Tabla 51. Velocidades y caudales obtenidos en las tuberías con el cauda de los estudios realizados	
Tabla 52. Comparación de las partidas	114

INDICE DE ANEXOS

Anexo 1. Matriz de consistencia	.128
Anexo 2. Resultados de las encuestas	.132
Anexo 3. Consumo mensual de acuerdo a EPS TACNA S.A	.135
Anexo 4. Resumen de consumos de agua potable por distrito	.138
Anexo 5. Memoria de cálculo hidráulico	.144
Anexo 6. Plano de ubicación del proyecto de Alto de la Alianza	.165
Anexo 7. Plano de área de influencia	.167
Anexo 8. Plano topográfico	.169
Anexo 9. Plano de redes de agua potable de Expediente técnico aprobado	.171
Anexo 10. Plano de nuevas redes de agua potable propuesto	.173
Anexo 11. Plano de accesorios del expediente técnico aprobado	.175
Anexo 12. Plano propuesto de ubicación de nuevos accesorios	.177
Anexo 13. Análisis de precios unitarios	.179
Anexo 14. Metrados de partidas seleccionadas	.190

RESUMEN

Objetivo: La presente tesis titulada "EVALUACIÓN DE CRITERIOS DE LOS PARÁMETROS DE DOTACIÓN Y SU INFLUENCIA EN EL DISEÑO PARA SISTEMAS DE REDES DE AGUA POTABLE EN LA CIUDAD DE TACNA - 2018" se elaboró con el propósito de realizar la evaluación de los criterios de parámetros para obtener la dotación real en la ciudad de Tacna.

Metodología: Para poder llegar al objetivo se realizó encuestas en 40 viviendas representativas en cada distrito de la ciudad de Tacna, las cuales son Alto de la Alianza, Ciudad Nueva, Pocollay, Gregorio Albarracín y Tacna; y se comparó los resultados con la información que se obtuvo mediante EPS TACNA S.A. acerca de los consumos de agua potable en la ciudad de Tacna, una vez que se obtuvo la dotación con el procedimiento mencionado, se seleccionó un expediente técnico por distrito para luego calcular el caudal, a partir de esto se diseñó el sistema de redes de agua potable del expediente técnico seleccionado del distrito Alto de la Alianza, para finalmente demostrar la variación de diámetros de tuberías y cómo influye en el presupuesto.

Resultados: Según el estudio de dotación en toda la ciudad de Tacna en el año 2018, de acuerdo a la base comercial de la EPS TACNA S.A., se obtuvo una dotación de 160.23 l/hab/día, en el que se consideró las conexiones domiciliarias activas, y las pérdidas de agua potable, con el que se comprobó que lo indicado en el Reglamento Nacional de Edificaciones se encuentra sobreestimado, en tal sentido se realizó encuestas para un estudio más detallado, asimismo en la evaluación de criterios de los parámetros de dotación se demuestra que varía en diferentes sectores, teniendo como dotación en el cercado de Tacna de 180.11 litros/hab./día, en el distrito de Alto de la Alianza de 173.20 litros/hab./día, en el distrito de Ciudad Nueva de 171,35 litros/hab./día, en el distrito de Pocollay de 155,84 litros/hab./día y en el distrito Gregorio Albarracín Lanchipa de 168.72 litros/hab./día en el año 2018; además que se demuestra que se tiene 24.88% de reducción de precios al utilizar la dotación de los estudios realizados.

Conclusión: Se concluye que al utilizar parámetros generales de dotación del Reglamento Nacional de Edificaciones que en este caso es 220 l/hab/día se encuentra sobredimensionados, ya que no se toma en cuenta los diferentes criterios para hallar el consumo de agua de acuerdo al nivel socioeconómico de cada persona,

esto se comprueba con el diseño del expediente técnico relacionado al distrito Alto de la Alianza donde se tenía tuberías de 4" y 8" por lo que se aplicó la dotación calculada en el estudio de esta tesis que es 173.20 l/hab/día en el año 2018, la cual redujo la tubería de diámetro de 8" a 6" y que cumple las condiciones del Reglamento Nacional de Edificaciones –Norma OS.050, a partir de esto se puede afirmar que existe la sobrevaloración de recursos.

Palabras Claves: Dotación, Parámetros, Criterios, Nivel socioeconómico, Diseño de Redes.

ABSTRACT

Objective: The present thesis entitled "EVALUATION OF CRITERIA OF THE EQUIPMENT OF EQUIPMENT AND ITS INFLUENCE IN THE DESIGN FOR SYSTEMS OF NETWORKS OF DRINKING WATER IN THE CITY OF TACNA - 2018" was elaborated with the purpose of making the evaluation of the criteria of parameters to obtain the real endowment in the city of Tacna.

Methodology: In order to reach the objective, surveys were carried out in 40 representative dwellings in each district of the city of Tacna, which are Alto de la Alianza, Ciudad Nueva, Pocollay, Gregorio Albarracín and Tacna; and the results were compared with the information obtained by EPS TACNA S.A. about the consumption of drinking water in the city of Tacna, once the envelope was obtained with the aforementioned procedure, a technical file was selected by district to calculate the flow, based on this the water network system was designed of the selected technical file of the Alto de la Alianza district, to finally demonstrate the variation of pipe diameters and how it influences the budget.

Results: According to the endowment study in the entire city of Tacna in 2018, according to the commercial base of the EPS TACNA SA, an allocation of 160.23 liters / person / day was obtained, in which the domiciliary connections were considered. active, and drinking water losses, with which it was found that what is indicated in the National Building Regulations is overestimated, in this sense surveys were conducted for a more detailed study, also in the evaluation of endowment parameters criteria it is shown that it varies in different sectors, taking as endowment in the Tacna enclosure of 180.11 liters / person / day, in the Alto de la Alianza district of 173.20 liters / person / day, in the Nueva Ciudad district of 171, 35 liters / person / day, in the Pocollay district of 155.84 liters / person / day and in the Gregorio Albarracín Lanchipa district of 168.72 liters / person / day in 2018; In addition, it shows that there is a 24.88% reduction in prices when using the provision of the studies carried out.

Conclusion: It is concluded that when using general parameters of the National Building Regulations, which in this case is 220 liters / person / day, it is oversized, since the different criteria for finding water consumption according to the socioeconomic level of each person, this is proven by the design of the technical file related to the Alto de la Alianza district where there were 4 "and 8" pipes, so the calculation

calculated in the study of this thesis was applied. 173.20 liters / person / day in the year 2018, which reduced the diameter pipeline from 8 "to 6" and that meets the conditions of the National Building Regulation -Norma OS.050, from this it can be affirmed that there is an overvaluation of resources.

Key words: endowment, parameters, criteria, socioeconomic level, network design.

INTRODUCCION

Hasta la actualidad, se ha podido constatar mediante expedientes técnicos aprobados que los proyectistas no realizan el análisis de consumos domésticos para obtener la dotación real, es por esto que en muchos proyectos se considera la dotación de agua de acuerdo Reglamento Nacional de Edificaciones(RNE) referido a la Norma OS.100 "Consideraciones básicas de diseño de infraestructura sanitaria", pero se puede afirmar que no es una cifra real, sino que es relativa porque solo se tiene en consideración el clima y no los diferentes factores del modo de vida de un habitante, lo que podría originar sobredimensionar las redes de agua potable.

Por lo mencionado, en la presente tesis, se realizó la evaluación para obtener el consumo de agua potable en la ciudad de Tacna considerando los diferentes criterios de los parámetros de dotación, y se propuso el diseño de un sistema de redes de agua potable, realizando la comparación respectiva entre un sistema con la dotación real y el otro con lo indicado por el RNE.

El presente trabajo de investigación está estructurado por cinco capítulos, la cual se detallan a continuación:

Capítulo I Planteamiento del problema: Se describe el problema, la justificación del porque se elaboró la presente tesis, los objetivos y la hipótesis.

Capítulo II Marco Teórico: Se detalla los antecedentes internacionales, nacionales y local relacionados a estudios ejecutados, también se menciona bases teóricas referido a la información que servirá de apoyo para justificar la presente investigación relación a la dotación y su aplicación en el sistema de redes de agua potable, además se menciona la definición de términos claves.

Capitulo III Marco Metodológico: Se indica el tipo y diseño de la investigación, la población y muestra que se empleó para el estudio, la operacionalizacion de variables, la técnica e instrumentos que sirvieron para la recolección de datos, y el procesamiento y análisis de cómo se fue aplicando la dotación para el diseño.

Capitulo IV Resultados: Se detalla el procesamiento de los datos obtenidos a través del trabajo en campo, y el resultado de la aplicación en los cálculos de gabinete.

Capítulo V Discusión: Se detalla la comparación de los resultados obtenidos.

Finalmente, se indica las conclusiones y recomendaciones del presente trabajo de investigación.

CAPITULO I PLANTEAMIENTO DEL PROBLEMA

1.1. Descripción del problema

Los estudios donde se puede recurrir sobre la dotación de agua en la ciudad de Tacna es escaso, a pesar de que esta información es de gran importancia para el diseño de redes de agua potable, ya que ayudaría para tener un buen servicio.

Las unidades encargadas de la elaboración de expedientes técnicos de proyectos de saneamiento utilizan lineamientos específicos al momento de diseñar, donde se basan solo en el Reglamento Nacional de Edificaciones (RNE, 2006) - Norma OS.100, donde se indica parámetros generales de dotación.

En base a esto podemos mencionar el expediente técnico del proyecto Renovación y Ampliación de la Redes de Agua Potable y Alcantarillado de la J.V. Francisco de Paula Gonzales Vigil de la Ciudad de Tacna, elaborado por la División de Estudios de la Entidad Prestadora de Servicios de Saneamiento Tacna S.A. (EPS TACNA S.A.) y aprobado en el año 2015, donde se indica que "de acuerdo al RNE norma OS-100 se asumirá 220 L/hab./día (zona urbana, costa, clima cálido)"

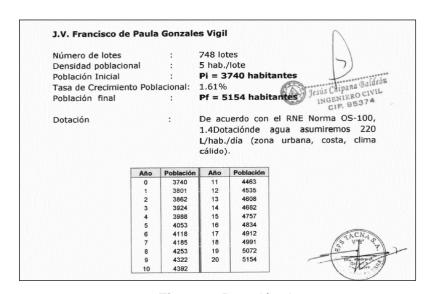


Figura 1. Dotación de agua

Fuente: Expediente técnico Renovación y Ampliación de la Redes de Agua Potable y Alcantarillado de la J.V. Francisco de Paula Gonzales Vigil de la Ciudad de Tacna

Además podemos referirnos a la elaboración del expediente técnico del proyecto Mejoramiento de las Redes de Agua y Desagüe de la Ampliación Ciudad Nueva, Distrito de Ciudad Nueva –Tacna-Tacna elaborado por la subgerencia de estudios de la Municipalidad Distrital de Ciudad Nueva y aprobado en el año 2017,

donde claramente en la memoria de cálculo en el que señala la dotación de agua de diseño, indica que "No existen registros de consumos por conexión en las asociaciones, puesto que por ser una zona con más porcentaje urbano no existe micro medición. Debido a la falta de información, los consumos considerados se asumen de acuerdo a lo recomendado por la norma OS.100 Consideraciones básicas de diseño de infraestructura sanitaria de la RNE".

Figura 2. Determinación de la dotación de agua de diseño Fuente: Expediente técnico Mejoramiento De Las Redes De Agua Y Desagüe De La Ampliación Ciudad Nueva, Distrito De Ciudad Nueva –Tacna-Tacna

Por lo mencionado en el párrafo anterior, el proyectista asumió la dotación de acuerdo a lo que establece el RNE (Norma OS.100) justificado que si no existiera estudios de consumo se considerará 220 L/hab/d para la dotación de diseño.

Asimismo, el expediente técnico del proyecto Mejoramiento de los servicios de Alcantarillado y Agua Potable en el Pueblo Joven José de San Martin, Distrito Alto de la Alianza - Tacna, aprobado en el año 2018, al momento de considerar en su memoria de cálculo la dotación de agua domestica indica directamente que en el caso de este proyecto es de 220 L/hab/dia según la Norma OS.100.

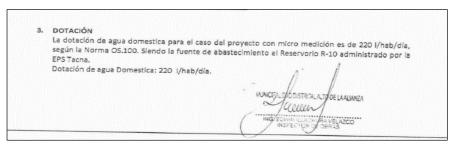


Figura 3. Dotación

Fuente: Expediente técnico Mejoramiento de los servicios de Alcantarillado y Agua Potable en el Pueblo Joven José de San Martin, Distrito Alto de la Alianza - Tacna

Entonces de acuerdo a los expedientes técnicos elaborados por diferentes entidades y en diferentes años, podemos afirmar que no se está aplicando lo indicado en el RNE (Norma OS.100) donde se menciona que "La dotación promedio diaria anual por habitante, se fijará en base a un estudio de consumos técnicamente justificado, sustentado en informaciones estadísticas comprobadas", ya que se comprueba que sigue siendo común en la ciudad de Tacna que se diseñe con lineamientos generales de dotación.

También, la *Guía para la formulación de proyectos de inversión exitosos de saneamiento básico del Ministerio de Economía y Finanzas* (2011), recomienda que para determinar el consumo actual se puede calcular la dotación teniendo en cuenta la región geográfica, recolectando datos históricos de localidades con características similares, con el análisis de la curva de demanda teniendo en cuenta el consumo y el precio del agua; y con el consumo de agua determinado a través de la lectura de medidores".

Además, podemos mencionar que se puede obtener datos reales de acuerdo a la base de datos de la EPS TACNA S.A. de las diferentes lecturas de medidores a las viviendas en la ciudad de Tacna.

A pesar de que existen diferentes métodos para poder determinar el consumo, no se realizan los estudios respectivos para obtener el consumo real de agua potable en la ciudad de Tacna. Es por ello, en base a la ausencia de información es necesario realizar una investigación considerando los diferentes factores que influyen en el consumo de agua.

1.2. Formulación del problema

1.2.1. Problema General

¿De qué manera influye la falta de evaluación de criterios de los parámetros de dotación en la ciudad de Tacna en el año 2018?

1.2.2. Problemas Específicos

a. ¿En qué medida la situación socioeconómica interviene en la demanda doméstica de agua potable en la ciudad de Tacna en el año 2018?

- b. ¿Qué resultado demuestra la comparación entre los parámetros generales de dotación de acuerdo al RNE-Norma OS.100 y los parámetros reales de los estudios de dotación en la ciudad de Tacna en el año 2018?
- c. ¿Qué efecto económico ocasiona la inadecuada elección del parámetro de dotación en el diseño para sistemas de redes de agua potable en la ciudad de Tacna en el año 2018?

1.3. Justificación e importancia

Las entidades locales (municipalidades) y las entidades prestadoras de servicios de saneamiento tienen la responsabilidad de elaborar y ejecutar proyectos con el fin de mejorar la calidad del servicio de agua potable; pero generalmente al elaborar los expedientes técnicos solo se basan a lo indicado en el RNE y no se tiene en cuenta el consumo real de agua potable, ya que no se considera el nivel socioeconómico, densidad y el modo de vida de los habitantes en los diferentes sectores de una ciudad; de acuerdo a esto se indica que no se realiza los respectivos estudios, por lo que ocasiona que no se garantice la correcta aplicación de dotación de agua en los proyectos y podría originar que se esté subestimando en el diseño de las redes de agua potable originando que no cumpla con su función por la que fue ejecutada o sobrestimando lo cual ocasionaría un derroche de recursos económicos.

Tisnado (2014) menciona que "La información a la que se pueda acudir sobre la dotación de agua en nuestro país ya sea en el ámbito, nacional, regional o local es limitada, por lo que ocasiona que sea difícil tomar decisiones técnicas y sanitarias" (p.1).

De acuerdo a esta investigación se demuestra la escasa información que se encuentra sobre dotación de agua ya sea a nivel internacional o nacional.

Garzón (2014) afirma que si se analiza los caudales de consumo promedio con una herramienta estadística, como es el caso observado de los consumos determinados para habitante, se encuentra que los caudales promedios se reducen considerablemente a valores generales entre 86-138 L/hab-día, valores que comprueban que la dotación actualmente empleada, en la ciudad de Bogotá, se reduce con respecto a la actualmente contemplada por la Norma RAS 2000 que son valores de 110-115 L/hab-día, que reduce 25 L/hab-día comparando con la Norma, y por lo que se obtiene un 21.7% menos de caudal para el diseño de redes de distribución del sistema de abastecimiento en la ciudad de Bogotá.(p.128)

Se observa que al calcular la dotación promedio mediante una herramienta estadística de un determinado lugar, el valor difiere respecto a su norma vigente. Dicho valor al ser empleado en el diseño de redes de distribución podría resultar que se comporte de manera más eficiente.

Podemos indicar diferentes fuentes donde se indica valores específicos de dotación sin sustentar por qué se considera dichos datos, la cual se menciona los siguientes:

Agüero (1997), en su libro Agua Potable para Poblaciones Rurales, considera que "los factores determinan la variación de la demanda de consumo de agua en las diferentes localidades rurales; se asignan las dotaciones al número de habitantes y a las diferentes regiones del país como se muestra en la tabla 1 y 2":

Tabla 1.Dotación por número de habitantes

Población (Habitantes)	Dotación(L/Hab/Día)
Hasta 500	60
500-1000	60-80
1000-2000	80-100

Fuente: Normas Generales para Proyectos de Abastecimiento de Agua Potable, Plan de Saneamiento básico Rural, 1962.

Tabla 2.Dotación por región

Región Dotación(L/Hab/	
Selva	70
Costa	60
Sierra	50

Fuente: Normas de Diseño para proyectos de abastecimiento de Agua Potable para Pobladores Rurales, División de Saneamiento Básico Rural, 1984.

Vierendel (2009) en su libro Abastecimiento de agua y alcantarillado indica que "la dotación diaria por habitante se ajustara a los siguientes valores de la tabla 3":

 Tabla 3.

 Dotación diaria por habitante de acuerdo al clima

Población	Clima	
Poblacion	Frio	Templado
De 2,000 Hab. a 10,000 Hab.	120 L./Hab./Día	150 L/Hab./Día
De 10,000 Hab. a 50,000 Hab.	150 L/Hab./Día	200 L/Hab./Día
Más de 50,000	200 L/Hab./Día	250 L/Hab./Día

Fuente: Abastecimiento de Agua y Alcantarillado, Vierendel, 2009.

En base a los párrafos mencionados anteriormente se evidencia que años anteriores se usan parámetros generales de dotación para el diseño de un sistema de redes de agua potable.

Por lo anterior, podemos indicar que el uso de esta dotación afecta en el diseño, además que en la ciudad de Tacna el consumo es diferente en los diversos sectores, donde también influye el factor socioeconómico ya que no toda la población tiene la misma condición de vida y educación, como consecuencia de ello no se podría satisfacer las necesidades de agua para la población o hará que en un corto plazo sea necesario reestructurar el sistema, y todo debido a la falta de estudios de las dotaciones empleadas a pesar que la entidad que presta el servicio, a sectorizado a la ciudad de Tacna en 7 sectores.

Por lo que en la presente tesis se analizará datos estadísticos de los consumos actuales existentes de la ciudad de Tacna con ayuda de los registros de consumos de la EPS TACNA S.A. de las viviendas de los distritos de la ciudad de Tacna, considerando el distrito de Ciudad Nueva, Alto de la Alianza, Gregorio Albarracín Lanchipa, Pocollay y Tacna, además se obtendrá el consumo de agua de acuerdo a los diferentes criterios para el cálculo de la dotación; como el modo de vida de los habitantes, densidad, nivel socioeconómico y el agua suministrada a la población por sector, la cual se analizará realizando encuestas en los distritos mencionados ya que no todas las viviendas cuentan con medidor, todo esto con el fin de obtener valores exactos de la demanda de agua potable que ayudara para tener un mejor diseño del sistema de redes de agua potable y así se cumpla de manera satisfactoria con la meta por la cual fue proyectada.

1.4. Objetivos

1.4.1. Objetivo general

Realizar la evaluación de criterios para determinar de qué manera influye en los parámetros de dotación en la ciudad de Tacna en el año 2018.

1.4.2. Objetivos específicos

- a. Calcular en qué medida la situación socioeconómica interviene en la demanda doméstica de agua potable en la ciudad de Tacna en el año 2018.
- b. Comparar los parámetros generales de dotación de acuerdo al RNE-Norma
 OS.100 con los parámetros reales de los estudios de dotación en la ciudad de Tacna en el año 2018.
- c. Analizar qué efecto económico ocasionaría la inadecuada elección del parámetro de dotación en el diseño para sistemas de redes de agua potable en la ciudad de Tacna en el año 2018.

1.5. Hipótesis

1.5.1. Hipótesis general

La falta de evaluación de criterios de los parámetros influye negativamente al determinar la dotación en la ciudad de Tacna en el año 2018.

1.5.2. Hipótesis especificas

- a. La situación socioeconómica interviene de manera directamente proporcional a la demanda doméstica de agua potable en la ciudad de Tacna en el año 2018.
- b. La comparación de los parámetros generales de dotación de acuerdo al RNE-Norma OS.100 con los parámetros reales de los estudios de dotación en la ciudad de Tacna en el año 2018, demostraría que se está sobredimensionando al momento de diseñar redes de agua potable.
- c. La inadecuada elección del parámetro de dotación en el diseño para sistemas de redes de agua potable en la ciudad de Tacna ocasionaría un incremento económico en el año 2018.

CAPITULO II MARCO TEORICO

2.1. Antecedentes del estudio

Para poder analizar el efecto que ocasiona la falta de estudios acerca de la dotación es necesario consultar con diferentes fuentes referidos a este tema tanto a nivel internacional, nacional y local.

2.1.1. A nivel internacional

Arocha (1977) indica que:

Nuestras normas, basadas en algunas investigaciones propias y apoyadas en las de otros países, asignan cifras para las dotaciones de agua tomando en cuenta el uso de la tierra, la zonificación, y en otros casos las características de la población, expresándolas en lts/pers/dia ... Se debe tener cuidado en la adopción de los criterios para la determinación de dotación, ya que se ha hecho común el uso de normas que asignan cifras globales de consumo y que utilizados de una manera general pueden ocasionar sobrediseños o, por el contrario, proyectos tempranamente obsoletos. (p.3)

Es necesario que la dotación de agua se base en datos válidos y seguros. La adopción de normas debe ir precedida de una investigación de los datos básicos, por lo que no deben basarse en supuestos o en cifras cuya única autoridad sea el hecho de haber sido aplicadas por largo tiempo, estudiadas y obtenidas de otros medios. (p.3)

Rodríguez (2001) menciona que:

La dotación no es una cantidad fija, sino que se ve afectada por un sin número de factores que la hacen casi característica de una sola localidad; sin embargo, se necesita conocer de ante mano estos factores para calcular las diferentes partes de un proyecto que varían de acuerdo a los hábitos higiénicos de la población, el nivel de vida, grado de desarrollo, calidad de agua, condiciones climáticas, usos y costumbres, etc...para obtener el consumo doméstico se debe considerar también las necesidades fisiológicas, usos culinarios, lavado de ropa y utensilios, sistemas de calefacción y acondicionamiento de aire, riego de plantas y jardines privados, aseo de la vivienda, etc. (p.37)

El Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico (RAS) (2010), indica que:

En caso de que se opte por la última opción para el cálculo de la demanda de agua, la cual corresponde a la proyección de la población, la dotación neta por habitante es función del nivel de complejidad del sistema y sus valores máximos se deben establecer con la tabla 4:

Tabla 4.Dotación por habitante según el nivel de complejidad del sistema

Nivel de complejidad del sistema	Dotación neta (L/hab*día) climas templado y frío	Dotación neta (L/hab*día) clima cálido
Bajo	90	100
Medio	115	125
Medio Alto	125	135
Alto	140	150

Fuente: RAS, 2010.

El manual de agua potable, alcantarillado y saneamiento (2016) elaborado por la comisión nacional de agua (CONAGUA), señala que:

Dada la magnitud e importancia del proyecto aunado a una carencia significativa de información, para dar precisión a los estudios y definición del proyecto es recomendable, siempre que sea posible, hacer un estudio para definir los consumos de agua potable en la zona de interés.

Tabla 5.Promedio del consumo de agua potable estimado por clima predominante

Clima _	Consumo l/hab/d			Sub total por clima
	Вајо	Medio	Alto	_
Cálido Húmedo	198	206	243	201
Cálido Subhúmedo	175	203	217	191
Seco o Muy Seco	184	191	202	190
Templado o Frío	140	142	145	142

Fuente: CONAGUA, 2016.

Castillo (2009) concluye que:

Para el municipio de Muzo, los diferentes métodos de cálculo usados (INSFOPAL, RAS, Planeación nacional y Clasificación de consumo), están sobreestimando el consumo real del municipio, dando dotaciones de agua mucho mayor a la demanda de agua actual de la población. (p.117)

La evaluación de las estimaciones de dotaciones de agua por los métodos de cálculo utilizados en la investigación da como conclusión que la dotación de agua de un sistema de acueducto para un municipio debe estar ligado a las características propias de la población sumado a parámetros de cálculo tales como nivel de complejidad del sistema, población y clima. (p.119)

Lárraga (2016) recomienda lo siguiente:

Un adecuado análisis...es la base para determinar el tamaño de las obras a ejecutarse, por lo que al cometerse un error en defecto se genera obras que al poco tiempo de funcionamiento necesita ampliaciones; o error en exceso que se traduce en construcciones sobredimensionadas con altos costos innecesarios y el derroche de recursos. (p.34)

"Para determinar el consumo de agua en una población se utilizan los datos estadísticos que en su mayoría son registrados por los diferentes municipios como la fuente de información más confiable, pero se deberá tomar en cuenta varios factores..." (p.38).

Capacitar y concienciar a los habitantes de la localidad en el correcto manejo del agua y su adecuado use del sistema, respetando el principio de eficiencia en la provisión y el aprovechamiento racional por parte de los consumidores, complementándose con un control mediante el uso de medidores de flujo colocados en cada vivienda. Para que la junta administradora de agua pueda realizar un plan de autogestión y sea capaz de generar, mantener y administrar este sistema. (p.163)

2.1.2. A nivel nacional

Cachay (1997) concluye lo siguiente:

"La importancia de la conceptualización de la demanda de agua potable, consiste en diferenciar claramente de otras variables tales como necesidad y consumo, con el fin de cuantificar correctamente la demanda" (p.3-2).

Para determinar la demanda actual doméstica se tiene en consideración a toda la población ya sea conectada o no al sistema de red de agua potable y por niveles de estratos socioeconómicos y dentro de los conectados distinguiendo según condición de medición. (p. 3-4)

Para generar la información base con el fin de determinar la función demanda, se analizó primeramente la encuesta socioeconómica, sin embargo, debido a las características propias de la realidad de las ciudades, no fue posible captar toda la información pertinente, por lo que se procedió a complementar con investigación de campo y la instalación de medidores testigos, el segmento de población conectada a red pública de agua potable. (p. 3-4)

Clorindavega y Goñi (2012) menciona que "Se demuestra que el consumo de agua potable doméstico en la ciudad de Huaraz e Independencia es influenciado por las variables: ingreso, precio, densidad y educación" (p.108).

2.1.3. A nivel local

Tasaico (2018), en su Tesis "Mejoramiento Del Sistema De Agua Potable en Subsector 07, Sector IV en la Ciudad De Tacna", indica lo siguiente:

Se puede apreciar que se está facturando en el subsector SS07 la cantidad de 3.22 litros por segundo mensuales cuando en realidad el reservorio presenta un consumo mensual de 25.64 litros por segundo mensuales. Es decir, la Entidad prestadora de servicios de agua potable está percibiendo aproximadamente 8 veces menores ingresos por el servicio de agua potable en el sector, además se observa que esta facturación corresponde a una dotación de 60.72 l/hab/día, valor muy por debajo de lo solicitado de los 220 l/hab/día que corresponderían de acuerdo a la norma peruana OS.100. (p.44)

Se puede apreciar que de acuerdo a la cantidad de agua realmente consumida (25.64 l/s) con la población obtenida según el promedio de las encuestas y el valor adoptado por la EPS TACNA S.A. (la cual debería suponer un valor conservador), en el subsector SS07 se presenta una dotación promedio de 483.51 l/hab/día, un valor que prácticamente duplica el solicitado por la norma peruana OS.100 donde se recomienda 220 l/hab/día para clima templado o cálido, sin embargo de acuerdo al cálculo se está consumiendo 2065 L/d, es decir el consumo

que se da en el sector es el equivalente a 9 personas por lote (a 220 l/hab/día) o a que hubiesen 2150 lotes en el subsector, un dato bastante dudoso. (p.45)

"Quedando comprobado el gran excedente de consumo en el subsector SS07 (13.97 litros por segundo), se recomienda a la entidad tomar medidas para un consumo y facturación adecuado en el mismo" (p. 90).

Cerrón (2014), en un Estudio de consumo de agua para el proyecto de habilitación urbana Los Álamos de Tacna, Distrito de Tacna, Provincia de Tacna, Departamento de Tacna, concluye lo siguiente:

Considerando errores en la micromedición, la continuidad (20.99 horas/dia) y presión del servicio (25.67 mca), podemos afirmar que el consumo promedio de los habitantes de Tacna es 120 l/hab/día. (p.10)

2.2. Bases teóricas

2.2.1. Técnicas de muestreo

La presente investigación se basará en datos estadísticos del consumo de agua potable que se obtendrán mediante encuestas e información histórica del consumo de agua registrado en la base de datos de la EPS TACNA S.A. de acuerdo al catastro de usuarios.

2.2.1.1. Encuesta

Cea (1998) define que:

La encuesta es la puesta en práctica de un procedimiento estandarizado para recaudar información tanto oral como escrita de una muestra amplia de la población de interés; y, la información recogida se limita por las preguntas que componen el cuestionario" (p. 240).

También señala que entre las características definitorias de las encuestas destacan las siguientes:

- a. La información se obtiene a través de respuestas de las personas encuestadas, por lo que existe un margen de error de las respuestas obtenidas.
- b. Se formulan las mismas preguntas para las personas encuestadas, y en el mismo orden, para poder comparar la información.

- c. Las respuestas recaudadas se ordenan para luego examinar las relaciones entre ellas mediante técnicas estadísticas.
- d. La información proporcionada depende de la existencia de errores de muestreo y de errores ajenos al muestreo como el diseño de la encuesta.

Previo a la selección de la muestra, la población debe ser dividida en partes que son llamadas unidades de muestreo... Existen varias posibilidades para escoger la unidad de muestreo: pueden ser personas tomadas aisladamente, los miembros de una familia, las personas que viven en una cuadra, en una manzana o en un barrio. (Collazos y Duque, 1993)

2.2.1.2. Lectura de medidores

Ministerio de Economía y Finanzas (2015), indica que:

En el caso del Agua Potable, la demanda promedio mensual o anual por tipo de usuario, se estima a partir de los consumos de aquellos usuarios que disponen de medidor operativo y se les factura en función del consumo leído, siempre que dispongan de un servicio continuo.

Los consumos registrados de agua potable deben evaluarse tanto para los usuarios que cuenten con micromedición como de aquellos que no cuentan con ella. Este último muchas veces es el factor principal de un nivel alto de agua no facturada pues las asignaciones de consumo con las que se les factura muchas veces subestiman el consumo real de los usuarios. (p.112)

2.2.1.3. Información Histórica de Consumo de Agua Potable

Ministerio de Economía y Finanzas (2015), indica que:

El consumo histórico por usuario se extrae de la base de datos del área comercial de la entidad operadora (EPS, municipalidad u operador privado). (p.112)

Para la presente investigación se obtendrá los consumos facturados (promedio y consumos reales) mensuales de septiembre, octubre, noviembre y diciembre del año 2018, de cada distrito de la ciudad de Tacna con la ayuda del programa SIINCO donde se encuentra registrado el catastro de usuarios de la EPS TACNA S.A.

De acuerdo a la Resolución de Consejo Directivo N°023-2013-SUNASS-CD (2013) de la Superintendencia Nacional de Servicios de Saneamiento (SUNASS) los usuarios que no presentan lectura, se les asignará un consumo promedio de acuerdo a la tabla 6:

Tabla 6.Asignación Máxima de Consumo

Volumen asignado (m3/mes)				
Social	Domestico	Comercial	Industrial	Estatal
10	20	30	60	75

Fuente: SUNASS, 2013.

2.2.2. Cifras de consumo de agua potable

Las cifras del consumo de agua potable deben tomarse de información real y segura, para que posteriormente no ocasione errores al momento de aplicarlas como dato de diseño de redes de agua potable, es por esto que las normas peruanas deberían basarse en investigación de campo; y tendrían que ser estudiadas detalladamente, para que así se sustente el porqué, de las cifras de dotación que mencionan, ya que actualmente la norma peruana OS.100 está basada en algunas investigaciones propias y apoyadas en algunas otras normas de otros países donde se toma cifras generalizadas en función del clima, área y tipo de producción.

La Organización Mundial de la Salud (OMS, 2003) indica que:

La cantidad de agua que se provee y que se usa en las viviendas es un aspecto importante de los servicios de abastecimiento de agua domiciliaria que influye en la higiene y, por lo tanto, en la salud pública. Hasta la fecha, la OMS no ha proporcionado datos sobre la cantidad de agua domiciliaria que se requiere para promover una buena salud, sin embargo, la OMS si indica el consumo que una persona necesita para tener una buena higiene la cual es un promedio 100 litros diarios de agua .

A continuación, se muestran algunas investigaciones del consumo de agua potable realizadas por diferentes fuentes:

Olivari y Castro (2008, p.47), definen que el consumo doméstico está constituido por el consumo familiar de agua y que incluye las bebidas, lavado de ropa, baño y aseo personal, cocina, limpieza y adecuado funcionamiento de las instalaciones

sanitarias, el cual representa generalmente el consumo predominante en el diseño. En su proyecto considero un consumo de 60 lit/hab/día, de acuerdo al estudio social de los habitantes, el cual está distribuido de la siguiente manera:

Tabla 7.Consumo doméstico

Clase De Consumo	Lt/Hab/Día
Bebida	03
Uso cocina	10
Lavado de ropa	15
Limpieza de baño	04
Higiene personal	20
Limpieza del hogar	08
Dotación del Consumo Domestico	60

Fuente: Epsel S.A. (como se citó en Olivari y Castro, 2008).

Los siguientes datos de consumo según SEDAPAL nos pueden hacer entender nuestro día a día en relación con el agua:

Figura 4. Ahorro de agua Fuente: SEDAPAL

De acuerdo al Instituto Costarricense de Acueductos y Alcantarillados (2010) indica que el consumo de agua es el siguiente:

Consideración Individual:

- En la ducha, 6 minutos con el tubo abierto: 72 litros
- En el lavatorio, 5 minutos con el tubo abierto: 24 litros
- En el servicio sanitario, 3 jaladas por día: 30 litros

Consideración colectiva:

• Lavado de platos y preparación alimentos: 40 litros

Lavado de ropa: 8 litros

• Otros como lavado de auto, riego, limpieza: 6 litros

En un artículo Cárdenas (2015), indica una aproximación de los litros consumidos por persona y día, pero hay que tener en cuenta que varían en función de los hábitos de cada persona (duración de apertura de grifos, agua utilizada en la ducha, etc) y el estado de los equipos. Por lo que menciona lo siguiente:

- Ducha: 60 litros (15 minutos)

Lavado de manos: 3,5 (55 segundos)

- Uso WC: 6 a 15 litros

Uso de lavadora: 50 a 200 litros
Uso de lavavajillas: 18 a 150 litros
Lavar platos a mano: 15 a 30 litros

- Limpiar la casa: 10 litros

De acuerdo a las fuentes mencionadas se realizó un promedio de consumo acerca de los diferentes factores de la demanda de agua que se usara en las encuestas.

Tabla 8.Promedio de Consumo

Usos	s Del Agua	Promedio De Consumo	
Ве	ber Agua	3 litros/persona	
Bañarse -	Tina	135 litros/uso	
Danaise –	Ducha	8 litros/min	
Lavado [De Manos/Cara	3 litros/min	
Lavado	o De Dientes	3 litros/min	
Servic	Servicio Sanitario 7 litros/ino		
(Cocina 6 litros/us		
Lavado	De Servicios	3 litros/uso	
Lavado De Ropa	Lavadora	5 kg - 50 litros 7 kg - 60 litros 10.5 kg- 80 litros 13kg- 100 litros 16kg-110 litros 18kg-120 litros	
	Mano	60 litros/persona	
Limpieza	De La Vivienda	10 litros/limpieza	

Vehículo	200 litros /vehículo
Jardín O Macetero	8 litros /min
Mascotas	30 litros /baño

Fuente: Elaboración propia

2.2.3. Factores que intervienen en el consumo de agua

El consumo de agua está relacionado a varios factores propios de cada lugar, considerando el clima, nivel de vida y costumbres de los habitantes, calidad del agua suministrada, tarifa del agua, presión en la red de distribución, errores en la micromedición y continuidad del servicio.

2.2.3.1. Tipos de consumo

De acuerdo a la *Guía para la formulación de proyectos de inversión exitosos de saneamiento básico* (2011, p.28) define los tipos de consumo en los siguientes:

a. Consumo doméstico

Depende del consumo por persona (litros/hab./día) y la cantidad de personas por vivienda, la cual determina el consumo por vivienda.

Para determinar el consumo se puede adoptar los siguientes criterios:

- Consumo según región geográfica.
- Consumo de otras localidades con características similares.
- Curva de demanda elaborada con información del consumo ante opciones de precio.

b. Otros consumos

También existen otros consumos relacionados a las categorías industrial, comerciales, estatales, estimando un consumo promedio.

2.2.3.2. Factores socioeconómicos

"Las características económicas sociales de una población pueden evidenciarse a través del tipo de vivienda" (Arocha, 1977, p.6).

El nivel socio económico no es una característica física y fácilmente informable, sino que se basa en la integración de distintos rasgos de las personas o sus hogares, cuya definición varía según países y momentos históricos (O. Vera y F. Vera, 2013, p.41)

Se debe considerar la posición de una persona dentro de una estructura social jerárquica donde se considera también el lugar social de una persona dentro de un grupo social, basado en varios factores, incluyendo el ingreso y la educación.

Nivel Socioeconómico en el Perú

En el año 2003, las asociadas de Apeim acordaron la unificación y homogenización de la fórmula para la determinación de niveles en el Perú. En el 2008 realizó nuevamente un estudio completo de niveles en la Gran Lima y en 6 ciudades del interior del país. Se trabajó con una muestra total en Lima de 3,087 y en provincias de 2,735 hogares. En el 2011 para la definición de la fórmula se ha trabajado con variables y datos tomados de la Encuesta Nacional de Hogares (ENAHO).

O. Vera y F. Vera (2013) mencionan lo siguiente:

Cabe resaltar, las definiciones de las dimensiones y variables sobre el Nivel Socioeconómico:

- Instrucción del jefe de Familia: Variable orientada a Instrucción del Jefe de Familia. representar condiciones del ámbito social actual y de una situación económica precedente. Definida por APEIM como el grado de instrucción del Jefe de Familia, siendo redefinida como el nivel educativo o de estudios alcanzados por ambos padres o tutores.
- 2. Comodidades del hogar: Variable que representa la Comodidades del hogar: tenencia de Bienes (aparatos electrónicos, electrodomésticos), servicios domésticos o comunicaciones (telefonía fija, celular) propiedad de la familia, que suponen un patrimonio, un estándar de vida y muestra de status económico. Esta variable no utilizada por presentar dificultad en su recolección por los jóvenes universitarios.
- 3. Características de la vivienda: Definida por APEIM como el Características de la vivienda: conjunto de materiales con que la vivienda ha sido construida (techo, paredes y piso), reflejo de la situación social y económica. Se incluyó en esta escala con algunas adaptaciones para el grupo de estudio y nuestra región, siendo utilizado el material predominante en el piso del hogar.
- 4. Acceso a salud en caso de hospitalización: Variable Acceso a salud en caso de hospitalización: representativa de la situación económica actual de la familia y, en forma complementaria, muestra de la actitud social en la

- misma. Se incluyó sin cambios en esta nueva escala, siendo muy aceptada por los jóvenes universitarios.
- 5. Ingresos económicos de la familia: Variable incorporada en la nueva escala, por ser un aspecto básico y eje principal de la evaluación del NSE.

Tabla 9. *Evaluación de los Niveles Socioeconómicos*

Niveles	Nse A	Nse B	Nse C	Nse D	Nse E
Variables	Alto/Medio Alto	Medio	Bajo Superior	Bajo Inferior	Marginal
	Doctorado		Universitarios Incompletos		Sin Estudios
		Estudios	Superior No		Primaria Incompleta
Instrucción Del Jefe De Familia	Diplomado	Universitarios	Universitario Completa	Secundaria Completa	Primaria Completa
	Postgrado(Master)	Completos	Superior No Universitario Incompleta	·	Secundaria Incompleta
Consulta Medica	Medico Particular En Clínica Privada	Medico Particular En Consultorio	Seguro Social/Hospital Ffa/Hospital De Policía	Hospital Del Ministerio De Salud	Posta Medica/Farmacia/Naturista
N° Promedio De Habitantes	1-2 Personas 3-4 Personas		5-6 Personas	7-8 Personas	9 A Más Personas
Material Predominante En Pisos	Parquet/ Laminado/ Mármol	Cerámica/Madera Pulida	Cemento Pulido	Cemento Sin Pulir	Tierra/Arena
Nº Dramadia Da	Alfombra	Mayólica/Lose	eta/iviosaico		
N° Promedio De Habitaciones	5 A Mas	4	3	2	1-0

Fuente: O. Vera O. y F. (2013).

2.2.3.3. Factores meteorológicos

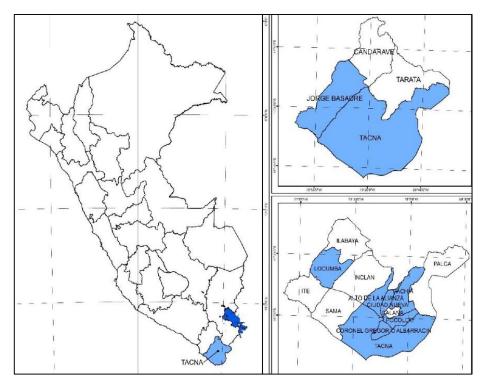
Generalmente los consumos de agua de una región varían a lo largo del año de acuerdo a la temperatura ambiental y a la distribución de las lluvias. Este mismo hechos puede establecerse por comparación para varias regiones con diferentes condiciones ambientales, de tal forma que la temperatura ambiente de la zona define, en cierto modo, los consumos correspondientes a higiene personal de la población que influenciaran los consumos per cápita. (Arocha, 1977, p.6)

2.2.3.4. Balance Hídrico

El balance hídrico se emplea para investigar cada componente de agua que se extrae y suministra a un sistema de agua potable dentro de un periodo de tiempo.

Tabla 10.Balance Hídrico propuesto por International Water Asotiation (IWA)

			Agua facturada exportada	_	
		Consumo autorizado	Consumo facturado medido	Agua facturada	
	Consumo autorizado	facturado	Consumo facturado no medido	-	
		Consumo autorizado no	Consumo no facturado medido Consumo no	-	
_		facturado	facturado no medido	_	
Volumen			Consumo no autorizado	<u>.</u>	
de entrada al sistema	Pérdidas de agua	Pérdidas aparentes	Inexactitudes de los medidores y	- Agua no	
			errores de manejo de datos		
			Fugas en las tuberías de aducción y distribución	facturada	
		Pérdidas reales	Fugas y reboses en tanques de almacenamiento	·	
			Fugas en conexiones de servicio hasta el punto del medidor		


Fuente: SUNASS

2.2.4. Servicio de agua potable en la ciudad de Tacna

Los sistemas de abastecimiento de agua potable están conformados por una o varias captaciones, planta de tratamiento, tuberías de conducción y/o impulsión, reservorios y red de distribución de agua. El objetivo del servicio de agua potable es suministrar una cantidad de agua apropiada y de buena calidad, con presión suficiente y en forma continua. (Tisnado, 2014, p.17)

Los sistemas del servicio de agua potable en la EPS TACNA S.A. están conformados por estaciones de bombeo, captación, plantas de tratamiento, reservorios, instalaciones de desinfección, laboratorios e instalaciones de control de calidad, líneas de impulsión y/o aducción y redes de distribución. (Tasaico, 2018, p.1)

La EPS TACNA S.A. tiene como ámbito de prestación de los servicios de saneamiento a las localidades de Tacna, Pachía y Locumba. Las dos primeras, ubicadas en la provincia de Tacna; y la localidad de Locumba, ubicada en la provincia de Jorge Basadre, en la región Tacna.

Figura 5. Ámbito de prestación de la EPS TACNA S.A. Fuente: SUNASS

2.2.4.1. Sistema de Agua Potable de la Ciudad de Tacna

El sistema integral de agua potable de la ciudad de Tacna está compuesto por los siguientes componentes:

- 02 Captaciones de aguas superficiales
- 07 Captaciones de aguas subterráneas
- 9165 metros de tuberías de línea de conducción de agua cruda
- 16 reservorios operativos
- 01 reservorio no operativo con un volumen total de 30 650 m3
- 38338 metros de tuberías de líneas de conducción de agua tratada
- 90055 metros de redes primarias
- 745 652 metros de redes de secundarias

2.2.4.2. Sistema de Captación

Las captaciones existentes del sistema de agua, está conformado por aguas superficiales y subterráneas que a continuación se detallan:

Cerro Blanco

Esta captación es la principal fuente de abastecimiento de la ciudad, cuya bocatoma está ubicada en la cuenca del río Uchusuma, la misma que proviene de las represas Paucarani, Condorpico y Casiri; además de los pozos El Ayro PA-1, PA-4, PA-6 y PA-9.

Caplina – Ingreso a la Planta de Tratamiento de Agua Potable Alto Lima La captación de aguas provenientes del río Caplina recolecta las aguas de escorrentía de la cuenca del mismo nombre. Esta bocatoma es una derivación sobre la margen derecha del canal Caplina, a partir de la cual se extraen los caudales conducidos para la planta de Alto Lima. Está ubicada en la cabecera de la planta.

Es un canal de concreto simple de sección rectangular de 0,50 m de ancho por 0,50 m de altura, con pendiente media de 1,6% y una longitud aproximada de 45,00 m y su capacidad aproximada es de 210 l/s.

 Estación de bombeo en Pozos Sobraya, consiste en tres pozos, de los cuales uno se encuentra fuera de operación, y los operativos producen caudales de 11l/s, y 20 l/s - Pozo subterráneo Parque Perú

Tiene un caudal de 35 l/s, y fue construido en el año 2016; es una estructura encargada de utilizar la fuente subterránea del acuífero de la zona de Parque Perú.

- Pozos de Viñani, consiste en su totalidad por cuatro pozos, que producen caudales de 68 l/s, 78 l/s, 90 l/s y 93 l/s.

2.2.4.3. Líneas de Conducción

Las líneas de conducción que abastecen a la población de la Ciudad de Tacna son los siguientes:

- Conducción Cerro Blanco a Desarenadores Uchusuma
- Conducción Desarenadores Uchusuma a Cámara de reunión de Calana
- Conducción cámara de reunión Calana a Planta Alto Lima
- Conducción canal Caplina a la Planta Calana
- Conducción canal Caplina a la Planta de Agua Potable Alto Lima

2.2.4.4. Plantas de Tratamiento

Tasaico (2018, p.1) menciona que:

La ciudad de Tacna se abastece por dos plantas de tratamiento de agua.

Planta de Tratamiento de agua potable Calana

Trata las aguas del canal Uchusuma. Actualmente se ha culminado el proyecto de ampliación de la planta donde la dotación aumentará de 400 l/s a 500 l/s.

La planta está conformada por las siguientes unidades:

- a. Cámara de reunión
- b. Cámara de distribución
- c. Dos unidades compactas de manto de lodos mecanizadas
- d. Instalaciones de filtración
- e. Dosificadores de sustancias químicas
- f. Cisterna de agua filtrada

Planta de Tratamiento de Agua Potable de Alto Lima

Trata las aguas provenientes del canal Caplina y de Uchusuma. Tiene un caudal de tratamiento actualmente de 150 l/s, posee las siguientes unidades de tratamiento:

- a. Canal de ingreso de agua cruda
- b. Desarenador ovoide
- c. Mezcla rápida
- d. Floculación
- e. Sedimentación
- f. Filtración y dosificación de sustancias químicas
- g. Colmatacion de lodos en los sedimentadores

2.2.4.5. Almacenamiento de Agua Potable

El sistema de abastecimiento de agua potable de la localidad de Tacna cuenta con 17 reservorios distribuidos en diferentes puntos de la ciudad.

- Reservorio R-01

Tiene una capacidad de 2000 m3, se encuentra ubicado en la planta de tratamiento de agua potable Calana. La caseta de válvulas carece de macromedidor, y no cuenta con un sistema de drenaje en el interior y parte de la estructura hidráulica se encuentra expuesta al exterior.

- Reservorio R-02

Tiene una capacidad de 1500 m3, se encuentra ubicado en la zona alta del distrito de Pocollay, recibe las aguas del reservorio R-01.

Reservorio R-02A

Tiene una capacidad de 1200 m3, se encuentra ubicado en la zona alta del distrito de Pocollay, recibe las aguas del pozo Parque Perú. No cuenta con caseta de válvulas y macromedidor.

Reservorio R-03

Tiene una capacidad de 1000 m3, se encuentra ubicado en la zona alta del distrito de Pocollay. Recibe las aguas de los pozos Sobraya N° 01 y N° 02.

- Reservorio R-04

Tiene una capacidad de 4000 m3, se encuentra ubicado en la planta de tratamiento de Alto Lima. El reservorio es alimentado a través de dos tuberías que provienen del centro de reserva R-02 y lleva la producción de la planta de tratamiento de Alto Lima. Este reservorio es una estructura de sedimentador que se ha adaptado para cumplir la función de un reservorio y su caseta de válvulas carece de un sistema de drenaje.

- Reservorio R-05

Tiene una capacidad de 600 m3, se encuentra ubicado en la zona baja de la ciudad que recibe las aguas de los reservorios R-04 y R-09.

Reservorio R-05-A

Tiene una capacidad de 1100 m3 se encuentra ubicado en la zona baja de la ciudad que recibe las aguas de los reservorios R-09.

- Reservorio R-06

Tiene una capacidad de 800 m3, se encuentra ubicado en la zona alta del Cono Norte, recibe las aguas del reservorio R-01. Carece del sistema de drenaje y macromedidor que abastece a la Ciudad Nueva.

- Reservorio R-07

Tiene una capacidad de 3500 m3, se encuentra ubicado en la planta de tratamiento de Alto Lima. Es alimentado del reservorio R-02 que llega al R-04. Este reservorio es una estructura de sedimentador que se ha adaptado para cumplir la función de un reservorio y carece de macromedidor.

- Reservorio R-08

Tiene una capacidad de capacidad de 3500 m3, se encuentra ubicado en la Planta de Alto Lima. Actualmente es usado como sedimentador de los procesos de la Planta Alto Lima.

- Reservorio R-09

Tiene una capacidad de 4000 m3 se encuentra ubicado en la vía Collpa, al frente del Cuartel Tarapacá.

- Reservorio R-10

Tiene una capacidad de 2250 m3, se encuentra ubicado en la parte alta del distrito de Ciudad Nueva. Carece de 2 macromedidores y falta de mantenimiento en las válvulas.

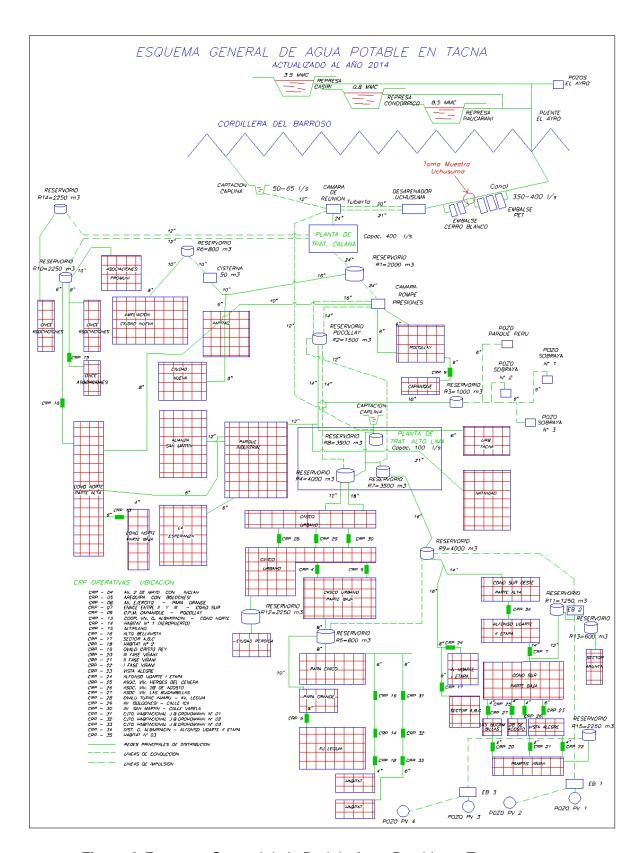
- Reservorio R-11

Tiene una capacidad de 1250 m3, se encuentra ubicado en la Av. Humbolt, en frente del Conjunto Habitacional Alfonso Ugarte y en el mismo recinto de la Estación de Bombeo V-2. Presenta desgaste en las empaquetaduras de las válvulas, además que el macromedidor existente se encuentra inoperativo debido a la instalación del Sistema SCADA.

- Reservorio R-12

Tiene una capacidad de 2250 m3 se encuentra ubicado en el sector denominado Ciudad Perdida. Actualmente no está operando por falta de producción de agua.

- Reservorio R-13


Este reservorio de capacidad de 450 m3, se encuentra ubicado en la Av. Humbolt y en el mismo recinto de la Estación de bombeo V-2. Carece del sistema de drenaje en la caseta de válvulas.

- Reservorio R-14

Tiene una capacidad de 1250 m3 se encuentra ubicado en la parte alta del distrito de Ciudad Nueva.

- Reservorio R-15

Tiene una capacidad de 2250 m3, se encuentra ubicado cerca de la Asociación El Pedregal frente a la cantera Municipal. Carece de macromedidor.

Figura 6. Esquema General de la Red de Agua Potable en Tacna Fuente: EPS Tacna S.A. – Gerencia de Operaciones (como se citó en Tasaico, 2018).

2.2.4.6. Sectorización Operacional

La EPS TACNA S.A. ha elaborado la sectorización operacional de la ciudad de Tacna donde la divide en 7 sectores operacionales, los cuales se subdivide en 28 sub sectores.

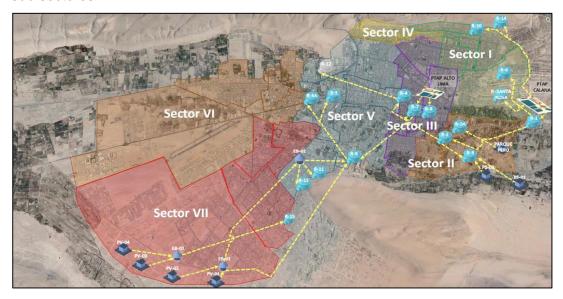


Figura 7. Esquema del sistema de abastecimiento de agua potable en la ciudad de Tacna
Fuente: SUNASS

2.2.5. Diseño de redes de agua potable

2.2.5.1.Parámetros de Diseño

2.2.5.1.1. Periodo de Diseño

RNE (2006), indica que, para proyectos de poblaciones o ciudades, así como para proyectos de mejoramiento y/o ampliación de servicios en asentamientos existentes, el período de diseño será fijado por el proyectista utilizando un procedimiento que garantice los períodos óptimos para cada componente de los sistemas.

Agüero (1997) refiere que:

El periodo de diseño puede definirse como el tiempo en el cual el sistema será 100% eficiente.

Para determinar el periodo de diseño se consideran factores como: durabilidad o vida útil de las instalaciones, factibilidad de construcción y posibilidades de ampliación o sustitución, tendencias de crecimiento de la población y posibilidades de financiamiento.

A continuación, se indican algunos valores asignados para los diversos componentes de los sistemas de abastecimiento de agua potable:

Obras de captación: 20 años.

- Conducción: 10 a 20 años.

Reservorio: 20 años.

Redes: 10 a 20 años (tubería principal 20 años, secundaria 10 años).

2.2.5.1.2. Población futura

De acuerdo al RNE (2006) indica que la población futura para el período de diseño considerado deberá calcularse de la siguiente manera:

- Tratándose de asentamientos humanos existentes, el crecimiento deberá estar acorde con el plan regulador y los programas de desarrollo regional si los hubiere; en caso de no existir éstos, se deberá tener en cuenta las características de la ciudad, los factores históricos, socioeconómico, su tendencia de desarrollo y otros que se pudieren obtener.
- Tratándose de nuevas habilitaciones para viviendas deberá considerarse por lo menos una densidad de 6 hab/viv.

a. Población actual

De acuerdo a la *Guía para la formulación de proyectos de inversión exitosos* de saneamiento básico (2011, p.28) indica que:

Se determina a partir de los censos de población y proyecciones del INEI.

La estadística de población no está actualizada al momento de formulación del estudio, proyecta la población del último censo con una tasa de crecimiento ínter censal hasta el periodo actual.

Si no hay estadísticas, realiza un conteo de población en base a la cantidad de viviendas y la densidad promedio de habitantes por vivienda, luego de aplicar una encuesta socioeconómica.

b. Tasa de crecimiento de la población

De acuerdo a la *Guía para la formulación de proyectos de inversión exitosos* de saneamiento básico (2011) menciona que "la población se proyecta con la tasa de crecimiento intercensal estimada según el numeral anterior o con la tasa estimada por el INEI para el distrito específico" (p.29).

c. Densidad por lote(vivienda)

La proyección del consumo de agua potable se realiza con las viviendas, donde se establece el número promedio de personas por vivienda basado en la información del último censo.

d. Métodos de Calculo

"Para el cálculo de la población futura se utiliza los siguientes métodos de crecimiento: método aritmético, el método geométrico y método de crecimiento exponencial que se eligen de acuerdo al tipo de población y de las características socioeconómicas de la misma" (Pingo, 2004, p.10).

Método Aritmético

Es un método de proyección completamente teórico y rara vez se da el caso de que una población presente este tipo de crecimiento. En la estimación de la población de diseño, a través de este método, sólo se necesita el tamaño de la población en dos tiempos distintos.

Con la ecuación 1 se calcula la población futura a través del método aritmético:

$$Pf = Pa + r.t \tag{1}$$

Dónde:

Pf = Población de diseño (hab.)

Pa = Población actual (hab.)

r = Tasa de crecimiento (hab./año)

t = Periodo de diseño (años)

Método Geométrico

Con este método, se asume que el crecimiento de la población es proporcional al tamaño de ésta. En este caso el patrón de crecimiento es el mismo que el usado para el método aritmético.

Con la ecuación 2 se calcula la población futura a través del método geométrico:

$$Pf = Pa(1+r)^t \tag{2}$$

Dónde:

Pf = Población de diseño (hab.)

Pa = Población actual (hab.)

r = Tasa de crecimiento anual

t = Periodo de diseño (años)

Método Exponencial

Para el uso de este método, se asume que el crecimiento de la población se ajusta al tipo exponencial y la población de diseño se puede calcular con la ecuación 3. La aplicación de este método requiere el conocimiento de por lo menos tres censos, ya que para el cálculo del valor de k promedio se requieren al menos de dos valores.

$$Pf = Pa.e^{k.t}$$
 (3)

Dónde:

Pf = Población de diseño (hab.)

Pa = Población actual (hab.)

k = Constante

t = Periodo de diseño (años)

2.2.5.1.3. Dotación de Agua

"El consumo de agua por persona sólo puede determinarse en base a estadísticas permanentes, y, de esta manera, establecer valores de las dotaciones correspondientes a los consumos futuros" (Pingo, 2004, 13).

De acuerdo al RNE (2006), en la norma técnica OS.100 indica que:

- La dotación promedio diaria anual por habitante, se fijará en base a un estudio de consumos técnicamente justificado, sustentado en informaciones estadísticas comprobadas.
- Si se comprobara la no existencia de estudios de consumo y no se justificará su ejecución, se considerará por lo menos para sistemas con conexiones domiciliarias una dotación de 180 l/hab/d, en clima frío y de 220 l/hab/d en clima templado y cálido.
- Para programas de vivienda con lotes de área menor o igual a 90 m2, las dotaciones serán de 120 l/hab/d en clima frío y de 150 l/hab/d en clima templado y cálido.
- Para sistemas de abastecimiento indirecto por surtidores para camión cisterna o piletas públicas, se considerará una dotación entre 30 y 50 l/hab/d respectivamente.
- Para habitaciones de tipo industrial, deberá determinarse de acuerdo al uso en el proceso industrial, debidamente sustentado.
- Para habilitaciones de tipo comercial se aplicará la Norma IS.010 Instalaciones Sanitarias para Edificaciones.

2.2.5.1.4. Demanda Contra incendio

Vierendel. (2009), indica que:

- a. En poblaciones hasta de 10,000 habitantes no se considerara demanda contra incendio, salvo en casos especiales en que se justifique por la calidad combustible de los materiales de construcción, industrias inflamables, etc.
- b. En poblaciones de 10,000 a 100,000 habitantes deberá proveerse de este servicio de acuerdo a las características propias de la localidad, considerándose la ocurrencia de un siniestro como máximo en cualquier punto de la red, atendida por 2 hidrantes simultáneamente cada uno con 15 Lts./seg.

Se recomienda usar hidratantes con 16 Lts./seg. De capacidad.

El tiempo minimo de funcionamiento de estos hidrantes será de 2 Horas.

c. En poblaciones mayores de 100,000 habitantes se considerara 2 siniestros de ocurrencia simultanea; uno ocurriendo en zona residencial y el otro en zona industrial o comercial, atendido este ultimo por 3 hidrantes.

2.2.5.2. Variaciones de consumo

De acuerdo al RNE (2006), en la norma técnica OS.100 indica que:

En los abastecimientos por conexiones domiciliarias, los coeficientes de las variaciones de consumo, referidos al promedio diario anual de la demanda, deberán ser fijados en base al análisis de información estadística comprobada. De lo contrario se podrán considerar los siguientes coeficientes:

- K1 = Máximo anual de la demanda diaria: 1.3
- K2 = Máximo anual de la demanda horaria: 1.8 a 2.5

2.2.5.3. Caudales de diseño

Pingo (2004), señala que:

Con el fin de diseñar las estructuras de los elementos que conforman los sistemas de abastecimiento de agua, es necesario calcular el caudal apropiado, el cual debe combinar las s de la población de diseño. Normalmente, se trabaja con tres tipos de caudales:

2.2.5.3.1. Caudal promedio diario anual (Qm)

"Es el caudal promedio obtenido de un año de registros y es la base para la estimación del caudal máximo diario y el caudal máximo horario" (Pingo, 2004,13).

"El consumo promedio diario anual, se define como el resultado de una estimación del consumo per cápita para la población futura del periodo de diseño, expresada en litros por segundo (l/s) y se determina mediante la siguiente ecuación" (Agüero, 1997, p.24)

$$Qm = \frac{Pf * Dotaci\'{o}n(d)}{86400 \, s/dia} \tag{4}$$

Dónde:

Qm = Consumo promedio diario (l/s).

Pf = Población futura (hab.).

d = Dotación (I/hab./día).

2.2.5.3.2. Caudal máximo diario (Qmd)

"Representa el día de mayor consumo en el año, y se calcula según la siguiente ecuación" (Pingo, 2004, p.14).

$$Qmaximodiario = K_1 * Q_{nromedio}$$
 (5)

2.2.5.3.3. Consumo máximo horario (Qmh)

(Pingo, 2004, p.14). "Es la demanda máxima que se presenta en una hora durante un año completo, por lo que se determina con la ecuación 6"

$$Qmaximohorario = K_2 * Q_{promedio}$$
 (6)

2.2.5.4. Redes de distribución

La red de distribución propiamente dicha está compuesta principalmente por las tuberías (principales y ramales distribuidores) y cumple la función de conducir el agua potable a cada una de las conexiones domiciliarias, evitando desperdiciar el recurso en su recorrido. Las tuberías pueden ser clasificadas de acuerdo a dos criterios los cuales son su material de fabricación y de acuerdo a su presión interna de trabajo. (Tasaico, 2018, p.23)

Tasaico (2018) menciona que:

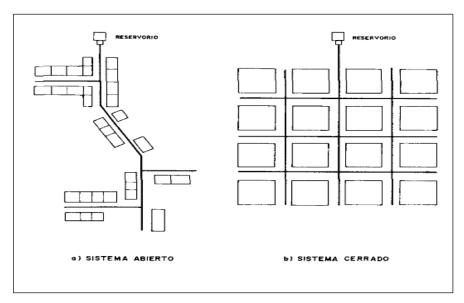
La red de distribución existentes... esta conformadas por tuberías de hierro fundido, asbesto cemento o PVC, por lo que las tuberías de hierro fundido son las más antiguas que se remonta a los años 30, la instalación de tuberías de asbesto

cemento se empezó a usar en la década del 60, y las tuberías de PVC son las que se empezaron a utilizar más reciente.

2.2.5.4.1. Tipo de Redes

a. Sistema abierto

(Agüero, 1997) indica que:


Las redes de distribución están constituidas por un ramal troncal y una serie de ramificaciones. El sistema abierto es utilizado cuando no se permite la interconexión entre ramales y cuando las poblaciones tienen un desarrollo lineal, generalmente es a lo largo de un río o camino.

La tubería matriz se instala a lo largo de una calle, de la cual se derivan las tuberías secundarias. Las desventajas que presentan es que el flujo está determinando en un solo sentido, y en el caso de sufrir desperfectos puede ocasionar que se deje sin servicio a una parte de la población. El otro inconveniente es que en el extremo de los ramales secundarios se dan los puntos muertos, es decir el agua ya no circula, sino que permanece estática en los tubos originando sabores y olores. (p. 94)

b. Sistema cerrado

(Agüero, 1997) indica que:

Son redes constituidas por tuberías interconectadas formando mallas. Este tipo de red de distribución es el más conveniente de usar ya que trata de lograrse mediante la interconexión de tuberías crear un circuito cerrado que permita un servicio más eficiente y permanente. En este sistema se eliminan los puntos muertos; por la cual tiene como beneficio que, si se tuviera que realizar reparaciones en los tubos, el área que se queda sin agua se puede reducir a una cuadra, dependiendo de las ubicaciones de las válvulas. Otra ventaja es que es más económico, los extremos son alimentados por ambos extremos consiguiéndose menores perdidas de carga y por lo tanto menores diámetros; ofrece más seguridad en caso de incendios, ya que se podría cerrar las válvulas que se necesiten para llevar el agua hacia el lugar del siniestro. (p. 97).

Figura 8. Tipos de redes de distribución Fuente: Agüero, 1997.

2.2.5.4.2. Conexiones domiciliarias

Según Agüero (1997, p.114), las conexiones domiciliarias [...] son las tuberías de servicio de agua que se instalan a partir de la tubería matriz hasta el interior de cada vivienda. Para la instalación de las conexiones domiciliarias se utiliza, tuberías de ½".

2.2.5.4.3. Consideraciones básicas de diseño

a. Coeficientes de fricción

De acuerdo a la norma OS.050 Redes de distribución de agua para consumo humano detalla lo siguiente:

Las redes de distribución se proyectarán, en principio y siempre que sea posible en circuito cerrado formando malla. Su dimensionamiento se realizará en base a cálculos hidráulicos que aseguren caudal y presión adecuada en cualquier punto de la red debiendo garantizar en lo posible una mesa de presiones paralela al terreno. Para el análisis hidráulico del sistema de distribución, podrá utilizarse el método de Hardy Cross o cualquier otro equivalente. Para el cálculo hidráulico de las tuberías, se utilizarán fórmulas racionales. En caso de aplicarse la fórmula de Hazen y Williams, se utilizarán los coeficientes de fricción que se establecen en la tabla 11. Para el caso de tuberías no contempladas, se deberá justificar técnicamente el valor utilizado del coeficiente de fricción.

Tabla 11.

Coeficientes de fricción "C" en la fórmula de Hazen y Williams

Tipo de Tubería	"C"
Acero sin costura	120
Acero soldado en espiral	100
Cobre sin costura	150
Concreto	110
Fibra de vidrio	150
Hierro fundido	100
Hierro fundido dúctil con revestimiento	140
Hierro galvanizado	100
Polietileno	140
Policloruro de vinilo(PVC)	150

Fuente: Reglamento Nacional de edificaciones, Norma técnica OS.050

De acuerdo a Tasaico (2018), menciona la fórmula de Hazen y Williams

$$V = 0.849 \ C \ D^{0.63} \ S^{0.54}$$

Dónde:

V= Velocidad media (m/s)

R= Radio hidráulico (m) equivalente en secciones circulares a D/4

S= Perdida de carga unitaria (m/m)

C= Coeficiente de fricción

b. Diámetro mínimo

De acuerdo al RNE (2009), en la norma OS.050 "Redes de distribución de agua para consumo humano" indica que:

El diámetro mínimo de las tuberías principales será de 75 mm para uso de vivienda y de 150 mm de diámetro para uso industrial.

En casos excepcionales, debidamente fundamentados, podrá aceptarse tramos de tuberías de 50 mm de diámetro, con una longitud máxima de 100 m si son alimentados por un solo extremo o de 200 m si son alimentados por los dos extremos, siempre que la tubería de alimentación sea de diámetro mayor y dichos tramos se localicen en los límites inferiores de las zonas de presión.

El valor mínimo del diámetro efectivo en un ramal distribuidor de agua será el determinado por el cálculo hidráulico. Cuando la fuente de abastecimiento es agua subterránea, se adoptará como diámetro nominal mínimo de 38 mm o su equivalente.

c. Velocidad

De acuerdo al RNE (2009), en la norma OS.050 "Redes de distribución de agua para consumo humano":

La velocidad máxima en la red de distribución será de 3 m/s.

En casos justificados se aceptará una velocidad máxima de 5m/s.

Tasaico (2018) menciona que:

Se solía presentar en la norma OS.050 una velocidad mínima admisible de 0.6 m/s la cual tenía como objetivo evitar la sedimentación dentro de la tubería, la misma fue removida debido a que no es posible cumplir siempre con ella quedando como restricción para los sistemas de alcantarillado donde las tuberías no trabajan a sección llena.

De acuerdo a la ecuación de continuidad $Q = AV = \frac{\pi D^2}{4}V$ se puede observar que la velocidad está afectada por los parámetros de caudal y el área, es decir, aun utilizando un diámetro mínimo, cumplir con una velocidad mínima depende totalmente del flujo de agua que depende a su vez de la demanda en los nodos, por ende no es posible conseguir una velocidad mínima si no se dispone de cierto caudal mínimo también. (p.27)

d. Presiones

De acuerdo a la norma OS.050 Redes de distribución de agua para consumo humano la Presión estática no será mayor de 50m en cualquier punto de la red. En condiciones de demanda máxima horaria, la presión dinámica no será menor de 10m.

Tasaico (2018) menciona que:

La presión estática máxima es referida únicamente a la diferencia de cotas entre el tanque de almacenamiento y el punto a medir, es decir este valor depende totalmente de la topografía del terreno.

La presión dinámica mínima es referida a la diferencia de cotas con el tanque de almacenamiento, afectada además por las pérdidas de carga presentes en la red, es decir este valor depende de la topografía del terreno y de los parámetros de la red de distribución. (p.28)

e. Válvulas

De acuerdo al RNE (2009), en la norma OS.050 "Redes de distribución de agua para consumo humano":

La red de distribución estará provista de válvulas de interrupción que permitan aislar sectores de redes no mayores de 500 m de longitud.

Se proyectarán válvulas de interrupción en todas las derivaciones para ampliaciones.

Las válvulas deberán ubicarse, en principio, a 4 m de la esquina o su proyección entre los límites de la calzada y la vereda.

Las válvulas utilizadas tipo reductoras de presión, aire y otras, deberán ser instaladas en cámaras adecuadas, seguras y con elementos que permitan su fácil operación y mantenimiento.

Toda válvula de interrupción deberá ser instalada en un alojamiento para su aislamiento, protección y operación.

Deberá evitarse los "puntos muertos" en la red, de no ser posible, en aquellos de cotas más bajas de la red de distribución, se deberá considerar un sistema de purga.

El ramal distribuidor de agua deberá contar con válvula de interrupción después del empalme a la tubería principal.

f. Caudal de diseño

De acuerdo al RNE (2006), en la norma OS.050 "Redes de distribución de agua para consumo humano la red de distribución", se calculará con la cifra que resulte mayor al comparar el gasto máximo horario con la suma del gasto máximo diario más el gasto contra incendios para el caso de habilitaciones en que se considere demanda contra incendio.

2.2.6. Análisis de precios unitarios

De acuerdo a la Guía de orientación para elaboración de expedientes técnicos de proyectos de saneamiento (2016) indica lo siguiente:

"Cada partida que compone el presupuesto debe estar sustentada con su respectivo costo unitario, debiendo tener concordancia con el nombre y N° de ítem" (p.28).

La estructura del análisis de costos unitarios, en lo que respecta a los rendimientos, estará en función de la ubicación del proyecto (condicionada por la altitud, pendiente, accesibilidad, tipo de suelo, tipo de estructura, clima etc.), debiendo ser concordante con los rendimientos del mercado, que son reflejadas,

entre otras, por revistas especializadas de construcción y/o de las Empresas Prestadoras de Servicios (EPS) más cercana al área de influencia del proyecto. (p.28)

2.2.6.1. Excavación

CEPIS (2005, p.6), indica lo siguiente:

"Las excavaciones se ejecutarán de acuerdo a la naturaleza del suelo, nivel de la napa freática, topografía y existencia de redes" (p.6).

Si existen muestras de que las condiciones del suelo y la napa freática son desfavorables para la excavación, se recomienda realizar exploraciones insitus para poder anticipar si será necesario hacer entibado, tablaestacado, pañeteo de paredes y/o drenaje de zanjas.

La excavación será hecha con equipo mecánico, con anchos y profundidades necesarias para la construcción cumpliendo con los planos replanteados y/o especificaciones técnicas.

CEPIS (2005, p.7), señala que para la excavación se debe seguir las siguientes recomendaciones:

- Se deberán eliminar las obstrucciones existentes que dificulten las excavaciones.
- El límite máximo de zanjas excavadas será de 300 m.
- En los terrenos rocosos (donde la profundidad relativa de la red deberá ser evitada al máximo), se podrán usar perforaciones apropiadas.
- El material excavado deberá ser colocado a una distancia del borde de la zanja equivalente a la profundidad del tramo no entibado, no menor de 30 cm.
- La excavación deberá ejecutarse en un ritmo tal que no permanezcan cantidades excesivas de material excavado en el borde de la zanja, ya que dificultaría el tráfico de vehículos y de peatones.
- El ancho de la zanja deberá ser uniforme en toda la longitud de la excavación.
- El ancho de las zanjas dependerá del tamaño de los tubos, profundidad de la zanja, naturaleza del terreno, taludes de las paredes laterales, y consiguiente necesidad o no de entibación,

En la tabla 12, se presenta valores recomendables para el ancho de zanja, de acuerdo al diámetro de la tubería.

Tabla 12.

Ancho de zanja

Diámetro Nominal		Ancho de Zanja			
mm	pulg.	Mínimo (cm)	Máximo (cm)		
100	4	45	70		
150	6	45	75		
200	8	50	80		
250	10	55	85		
315	12	60	90		
400	16	70	100		
450	18	75	105		
500	20	80	110		

Fuente: CEPIS, 2005.

2.2.6.2. Relleno de zanjas

CEPIS (2005, p.39), indica lo siguiente:

Es recomendable rellenar luego de la instalación de la tubería tan pronto como sea posible. Este proporcionará un manto de material escogido por encima de la tubería, que servirá de amortiguador al impacto de las cargas exteriores,

Es recomendable utilizar el mismo material excavado para el relleno de la zanja.

a. Cama de apoyo

CEPIS (2005, p.39), indica lo siguiente:

El tipo y la calidad del apoyo que tenga una tubería que ha sido tendida en una zanja, es otro factor que influye notablemente en la capacidad de soporte de los conductos enterrados. El fondo de la zanja debe conformarse para proveer un apoyo firme, estable y uniforme a lo largo de toda la longitud de la tubería.

CEPIS (2005, p.40), indica lo siguiente:

"Los materiales más económicos son: arena, fina o triturado pequeño, ya que su compactación se obtiene con un mínimo de apisonamiento. Con esta base, el objetivo primordial es evitar vacíos debajo y alrededor de cuadrante de la tubería. El fondo de la zanja deberá ser también continuo, plano y libre de piedras, troncos o materiales duros y cortantes"

Para proceder a instalar las redes de agua, las zanjas excavadas deberán estar refinadas y niveladas.

CEPIS (2005, p.40), De acuerdo al tipo y clase de tubería a instalarse, los materiales de la cama de apoyo que deberá colocarse en el fondo de la zanja serán:

En terrenos normales y semirocosos Será de arena gruesa o gravilla, que cumpla con las características exigidas como material selecto a excepción de su granulometría. Tendrá un espesor no menor de 0,10 m, debidamente compactada o acomodada (en caso de gravilla), medida desde la parte baja del cuerpo del tubo.

- En terreno rocoso

Será del mismo material y condición del inciso "a", pero con un espesor no menor de 0,15 m.

En terreno inestable (arcillas expansivas, limos etc.)
 La cama se ejecutará de acuerdo a las recomendaciones del proyectista. En casos de terrenos donde se encuentren capas de relleno no consolidado, material orgánico objetable y/o basura, será necesario el estudio y recomendaciones de un especialista de mecánica de suelos.

b. Primer relleno compactado

CEPIS (2005), indica lo siguiente:

El primer relleno compactado que comprende a partir de la cama de apoyo de la tubería, hasta 0,30 m por encima de la clave del tubo, será de material selecto para terreno normal. (p.40)

c. Segundo relleno compactado

CEPIS (2005, p.41), indica lo siguiente:

"El segundo relleno compactado será con material seleccionado, entre el primer relleno y la sub-base, se compactará con vibroapisonadores, planchas y/o rodillos vibratorios por capas no mayores de 0,15 m de espesor".

"Durante la prueba de la tubería, es importante comprobar la impermeabilidad de las uniones, para lo cual se deben dejar las mismas descubiertas".

d. Profundidad

En las especificaciones técnicas del proyecto "Mejoramiento del Sistema de Agua Potable y Alcantarillado en el AA. HH Conde De La Vega - Distrito de Cercado de Lima", se indica lo siguiente:

"Por otra parte una zanja muy angosta dificulta la labor de instalación de la tubería (tendido y compactación)" (p.7).

La variación de los espaciamientos entre los límites establecidos, dependerá del área de la estructura, profundidad de las excavaciones y tipo de terreno. Como recomendación general se sugiere el siguiente ancho de la zanja a nivel de clave del tubo: De + 0,30 m. (p.7)

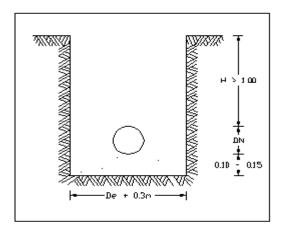


Figura 9. Dimensiones de zanja

Fuente: Expediente técnico "Mejoramiento del Sistema de Agua Potable y Alcantarillado en el AA. HH Conde De La Vega - Distrito de Cercado de Lima"

La altura mínima de relleno sobre la clave del tubo debe ser de 1,0 m con encamado y relleno de arena y material fino selecto compactado hasta por lo menos 0,30 m sobre la clave del tubo.

2.2.7. Metrados

De acuerdo a la Guía de orientación para elaboración de expedientes técnicos de proyectos de saneamiento (2011) define los tipos de consumo en los siguientes:

Los metrados del Expediente Técnico deben estar sustentados por cada partida, con la planilla respectiva y con los gráficos y/o croquis explicativos que el caso requiera. A fin de presentar un trabajo preciso y convincente, cuando sea necesario, la planilla de Metrados deberá incluir esquemas base para la medición de cada partida. (p.28)

2.3. Definición de términos

Para interpretar la investigación se deben tener en cuenta los siguientes conceptos claves:

- Medidor: Elemento que registra el volumen de agua que pasa a través de él. (RNE, 2009)
- SPSS: Es un software popular entre los usuarios de Windows, es utilizado para realizar la captura y análisis de datos para crear tablas y gráficas con data compleja. El SPSS es conocido por su capacidad de gestionar grandes volúmenes de datos y es capaz de llevar a cabo análisis de texto entre otros formatos más. (QuestionPro, s.f.)
- WATERGEMS: Es un software desarrollado por Bentley, con utilidad comercial de análisis, modelación hidráulica de sistemas de distribución o de riego, permite la simulación hidráulica de un modelo computacional representado. El modelamiento mediante este software presenta muchas ventajas con respecto a otros softwares disponibles, destacando su gran capacidad de integración con otros softwares tales como AutoCAD y ArcGIS. Siendo posible también exportar la red modelada para archivos de AutoCAD y Epanet. (Tasaico, 2018)
- **SIINCO:** Sistema integrado de Información comercial de EPS TACNA S.A.
- Clave de tubo: Directriz superior del manto del tubo. (Paris, 2007)
- Hipoclorito: Aplicación de cloro (gas licuado) o compuestos de cloro (hipocloritos) al agua cruda con propósito de desinfectarla. (Ministerio de Economia y Finanzas, 2015)
- Prueba hidráulica: La finalidad de las pruebas hidráulicas, es verificar que todas las partes de la línea de agua potable hayan quedado correctamente instaladas, probadas contra fugas, desinfectadas y listas para prestar servicio. (CEPIS, 2004)
- Abrazadera: Accesorio que permite la conexión del sistema de arranque con la tubería de la red de distribución de agua potable. (Paris, 2007)
- Accesorios: Piezas especiales necesarias para complementar el sistema de tuberías tales como curvas, codos, tees, etc. (Paris, 2007)

CAPITULO III MARCO METODOLOGICO

3.1. Tipo y diseño de la investigación

3.1.1. Tipo de investigación

El tipo de investigación es exploratorio-explicativo.

Investigación exploratoria ya que la presente investigación parte de un tema de investigación general que en este caso es la dotación, ya que es comúnmente usada en los cálculos para el diseño de redes de agua potable, la cual no ha sido profundizado por el motivo de que no se ha realizado los estudios respectivos para sustentarlo; además la obtención para esta información se realizara de forma directa mediante encuestas e indirecta en base a los datos históricos de EPS TACNA S.A.

Investigación explicativa ya que en este caso se usará la variable dependiente que es dotación que estará en función de las variables independientes que serán los diferentes factores para obtener dicho consumo.

3.1.2. Diseño de la investigación

El diseño del proyecto de investigación es de **campo** debido a que la investigación se realizará en un ambiente natural, mediante encuestas en los diferentes distritos de la Ciudad de Tacna.

3.2. Población y/o muestra de estudio

3.2.1. Población y/o muestra de estudios

El trabajo de investigación se realizará en la ciudad de Tacna, específicamente en los distritos de Alto de la Alianza, Ciudad Nueva, Pocollay, Gregorio Albarracín, Tacna, y para obtener los datos de consumo de agua se hará el muestreo con encuestas directas la cual se tomará 40 viviendas representativas por distrito, teniendo en total un universo de 200 viviendas en la ciudad de Tacna; la misma que al inicio del estudio no se sabrá si dichos domicilios cuentan con medidor.

3.3. Operacionalización de variables

A. Variable Dependiente

Estudios para obtener la dotación real de agua potable en la ciudad de Tacna.

- Definición Operacional

Obtención de la dotación real en la ciudad de Tacna, para garantizar el buen funcionamiento del sistema de agua potable, acorde a las exigencias para su diseño.

- Dimensión

Diseño de redes de agua potable en la ciudad de Tacna.

- Indicadores

- Encuestas
- Base de datos de EPS TACNA S.A.

B. Variable Independiente

Criterios de los parámetros de dotación de agua potable.

- Definición Operacional

Criterios que influyen en la obtención de dotación, para comprobar mediante estudios la cantidad real del consumo de agua potable.

- Dimensión

Dotación de agua potable

- Indicadores

- Consumo de agua
- Nivel socioeconómico
- Ubicación de las viviendas
- Número de habitantes por vivienda
- Tarifa de acuerdo a los que cuentan con agua potable.
- Sectorización por la empresa prestadora de servicios de agua potable
- Cantidad de agua suministrada por la empresa prestadora de servicios de agua potable

A continuación, se adjunta la matriz de operacionalización de variables:

Tabla 13. *Matriz de Operacionalización de Variables*

Variable	Definición operacional	Dimensión	Indicadores
Variable Dependiente:	Obtención de la dotación real en la ciudad de		
Estudios para obtener la dotación real de agua potable en la ciudad de Tacna.	Tacna, para garantizar el buen funcionamiento del sistema de agua potable, acorde a las exigencias para su diseño.	Diseño de redes de agua potable en la ciudad de Tacna.	 Encuestas Base de datos de EPS TACNA S.A.
Variable Independiente: Criterios de los parámetros de dotación de agua potable.	Criterios que influyen en la obtención de dotación, para comprobar mediante estudios la cantidad real del consumo de agua potable.	Dotación de agua potable.	 Consumo de agua Nivel socioeconómico Ubicación de las viviendas Número de habitantes por vivienda Tarifa de acuerdo a los que cuentan con agua potable. Sectorización por la empresa prestadora de servicios de agua potable Cantidad de agua suministrada por la empresa prestadora de servicios de agua potable

Fuente: Elaboración Propia

3.4. Técnicas e instrumentos para la recolección de datos

Se procedió a seleccionar 40 viviendas representativas en los distritos de Alto de la Alianza, Ciudad Nueva, Pocollay, Gregorio Albarracín y Tacna. Se menciona que la presente investigación cuenta con una población concentrada y de similares características de consumo de agua, lo cual facilito la recolección de datos.

Primeramente, se realizó las encuestas en las viviendas, haciendo uso de la siguiente plantilla de encuesta:

UNIVERSIDAD PRIVADA DE TACNA FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"EVALUACIÓN DE CRITERIOS DE LOS PARÁMETROS DE DOTACIÓN Y SU INFLUENCIA EN EL DISEÑO DE UN SISTEMA DE REDES DE AGUA POTABLE EN LA CIUDAD DE TACNA - 2018"

A. INFORMAC	IÓN BÁSICA	<u>r</u>						
PERSONA EN							FECHA:	HORA:
NOMBRE DE I					S.A.:			
DIRECCIÓN: _ DISTRITO:						PROVINCIA:	Tacna	REGION: Tacna
B. INFORMAC								
I. USO	HOIT GODITE				a ()Viv	ienda negocio	- Tipo de negocio	o:
2. MATERIAL 3. NIVEL SOC				Material nob A () E	le () Ot 3 () C	ros:	()E	
C. INFORMAC				-				
I. CUANTAS F								
B. CUANTAS F								
D. INFORMAC	IÓN SOCIO	CULTU	RAL D	EL USO DE	AGUA			
Reutiliza el a	gua? ()	Si () N	lo	Si la respues	sta es Si: Indic	ar en que reutiliza	en observaciones
USOS DEI	L AGUA	TIEN ESTIN (mi	IADO	VECES AL DÍA	VECES POR SEMANA	CONSUMO DIARIO(L)	PROMEDIO DE CONSUMO*	OBSERVACIONES
BEBER .	AGUA						3 litros/persona	
BAÑARSE	TINA						135 litros/uso	
	DUCHA						8 litros/min	
LAVADO MANOS/							3 litros/min	
LAVADO DE							3 litros/min	
SERVICIO SANITARIO							7 litros/inodoro	
COCINA							6 litros/uso	
LAVADO DE S	SERVICIOS						3 litros/uso	
LAVADO DE ROPA	LAVADORA						5 kg - 50 litros 7 kg - 60 litros 10.5 kg- 80 litros 13kg- 100 litros 16kg-110 litros 18kg-120 litros	
•	MANO						60 lt/persona	
LIMPIEZA VIVIEN							10 lt/limpieza	
VIVILI	10/1							
USOS DEI	L AGUA	SI	NO	CANTIDAD	VECES AL MES	CONSUMO DIARIO(L)	PROMEDIO DE CONSUMO*	OBSERVACIONES
VEHIC	ULO						200 litros/vehiculo	
JARDIN O MACETERO							8 litros/min	
MASCO	DTAS						30 litros/baño	
TO	TAL DE CON	ISUMO	DIAR	IO/PERSON	A		L/HAB/D	
Valores promedi	ios obtenidos n	nediante	diferer	nte fuentes me	ncionados en e	l I marco teórico d	l le la presente inves	igación
				GRACIA	s por su c	OLABORACIO	ÓΝ	
						0 = 7 1 = 0 7 17 10 7 0		

Figura 10. Plantilla de encuesta Fuente: Elaboración Propia

Previo a la encuesta se le explico al consumidor, que los datos obtenidos de la encuesta servirán para saber la demanda de agua real y que servirá para demostrar que es necesario realizar estudios para mejorar el servicio de agua potable.

Se solicitó a la EPS TACNA S.A., historiales del consumo de agua de la ciudad de Tacna, por lo que se obtuvo de los meses de septiembre, octubre, noviembre, diciembre del año 2018.

- Se pasará los datos obtenidos en la computadora.
- Se procederá mediante el análisis datos y metodología de diseño a la interpretación de los resultados.

3.5. Procesamiento y análisis de datos

Con la información obtenida se procedió a realizar una revisión de las encuestas para desechar o eliminar aquellas que estén incompletos o incoherentes.

Luego los datos de las encuestas se insertaron en el programa Excel, para obtener los valores de consumo por persona.

También con la ayuda del programa Excel se recolecto los consumos obtenidos por la base de datos de la EPS TACNA S.A. para los meses de septiembre, octubre, noviembre y diciembre, de acuerdo a las personas que fueron encuestadas, por tal motivo se hizo revisión de algunos medidores, más que todo de los que se nos facilitó el permiso, para así corroborar la información de la EPS TACNA S.A.

Después los datos de las encuestas y los consumos de acuerdo a la base de datos de la EPS TACNA S.A. y SUNASS se insertaron en el programa SPSS, donde se configuro para que se tome los valores mayores a 100 litros por persona ya que es el consumo mínimo de acuerdo a la OMS, para luego sacar el promedio de dotación por distrito y demostrarlo mediante un diagrama de dispersión.

Una vez que se obtuvo el promedio, se empezó a calcular el caudal de diseño por cada distrito para así comparar con lo que se utilizó en los expedientes técnicos ya aprobados.

Por último, se seleccionó un expediente para diseñar su sistema de redes con la dotación real obtenida, para demostrar que se puede optimizar el factor económico de acuerdo a las tuberías, y para esto se realizó la actualización de metrados que tengan más relación con la optimización de tuberías.

CAPITULO IV RESULTADOS

4.1. Generalidades

En el presente capítulo, se mostrará los resultados de los estudios realizados para obtener la dotación real, para esto primero se mostrará el cuadro detallado de las encuestas realizadas donde se evidenciará el consumo de los habitantes de acuerdo a su estilo de vida, después se mostrará los consumos históricos y promedios obtenidos mediante la base de datos de EPS TACNA S.A.; y luego la aplicación de esta dotación en el diseño de un sistema de redes de agua potable.

Por último, se mostrará la comparación entre la variación de precios por partidas relacionadas a la reducción que se obtuvo de la tubería.

Se detalla que el presente estudio se realizó en los distritos de Alto de la Alianza, Ciudad Nueva, Gregorio Albarracín Lanchipa, Pocollay y Tacna; por lo que se comparó caudales aplicando la variación de dotación entre lo obtenido mediante esta tesis y con lo que se indica en el RNE - OS.100 "Consideraciones básicas de diseño de infraestructura sanitaria" y para esto se usó 01 expediente técnico aprobado por distrito. Se menciona que para demostrar la optimización de precios se utilizó un expediente técnico del distrito Alto de la Alianza.

4.2. Demanda de los Servicios de agua potable

a. Diagnóstico Operativo

La EPS TACNA S.A. viene administrando los sistemas de agua potable en la ciudad de Tacna, abasteciendo a los distritos de Tacna, Alto de la Alianza, Ciudad Nueva, Pocollay y Gregorio Albarracín.

Cabe precisar que el servicio de Agua Potable de la ciudad de Tacna, cuenta con una cobertura promedio de 97,7%, que corresponden a usuarios que se abastecen de dicho servicio a través de conexiones domiciliarias y piletas, y se tiene un promedio de 96.7% (289959 personas) que corresponde a usuarios que solo cuentan con servicio a través de conexiones domiciliarias.

En la Tabla N°14 se detalla un resumen de los principales indicadores hasta el mes de agosto del 2018 que administra la EPS TACNA S.A.

Tabla 14.Principales indicadores de gestión de la EPS TACNA S.A.

Indicadores de Gestión		Agosto 2019		
	Und	Agosto - 2018		
Población	Hab.	299 854		
Población				
Servida de	Hab.	293 027		
Agua				
Cobertura de	%	97.7		
agua	/0	31.1		
Micromedición	%	60.6		
Continuidad	Hrs/día	16		
promedio	i ii 5/uia	10		
Presión	m.c.a.	17.8		
promedio	III.U.a.	17.0		
E (EDO TAONIA O A				

Fuente: EPS TACNA S.A.

b. Diagnóstico Comercial

Para la elaboración del presente estudio se ha tenido en cuenta consumos históricos de las diferentes conexiones existentes registrados en el área comercial de la EPS TACNA S.A.

Conexiones Activas e Inactivas

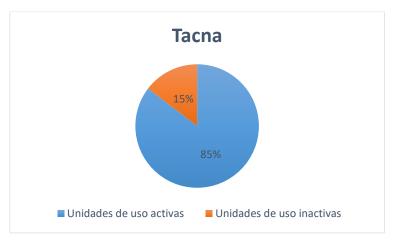

De acuerdo con la información comercial hasta el mes de agosto de 2018, la empresa contaba con un total de 80901 conexiones de uso de agua potable. De este total, las conexiones de uso activas e inactivas representaron el 85,4% y 14,6%, respectivamente, tal como se detalla a continuación:

Tabla 15.

Conexiones de uso activas e inactivas de agua potable hasta agosto 2018

Localidad	Conexiones de uso activas	Conexiones de uso inactivas
Tacna	80901 (85.4%)	13805 (14.6%)

Fuente: Área Comercial de la EPS TACNA S.A.

Figura 11. Conexiones activas e inactivas de agua potable Fuente: Elaboración Propia

Asimismo, se indica, el total de conexiones activas de agua potable activas, hasta el mes de diciembre del 2018, la cual se detalla en la tabla N°16.

Tabla 16.

Conexiones de uso activas de agua potable hasta diciembre 2018

Localidad/Mes	Septiembre	Octubre	Noviembre	Diciembre
Tacna	80464	80491	80919	81104

Fuente: Elaboración Propia

De acuerdo a las categorías de los usuarios, el total de conexiones de uso activas en la Ciudad de Tacna hasta el mes de agosto, el 90,1% correspondían a usuarios residenciales (sociales y domésticos) y el 9,9% a usuarios no residenciales (comerciales, industriales y estatales).

Tabla 17.Conexiones de uso activas de agua potable por categoría hasta agosto 2018

Categoría de Usuario	Conexiones
Social	397
Doméstico	72527
Comercial	6661
Estatal	558
Industrial	758
Total	80901

Fuente: Área Comercial de la EPS TACNA S.A.

Asimismo, se indica, el total de conexiones activas de agua potable activas por categoría, hasta el mes de diciembre del 2018, la cual se detalla en la tabla N° 18.

Tabla 18.Conexiones de uso activas de agua potable por categoría hasta diciembre 2018

Categoría de Usuario	Septiembre	Octubre	Noviembre	Diciembre
Social	312	304	305	297
Doméstico	72064	72091	72512	72729
Comercial	6740	6739	6747	6739
Estatal	565	569	571	557
Industrial	783	788	784	782
Total	80464	80491	80919	81104

Fuente: Elaboración Propia

• Conexiones por tipo de facturación

De acuerdo con información del área comercial de EPS TACNA S.A. a agosto de 2018, el 60.44% de conexiones de uso fueron facturadas por lecturas, el 22.26% fueron facturadas por promedio y, finalmente, el 17.29% fueron facturadas por asignación de consumo mensual, como se muestra en la Tabla N° 19.

Tabla 19.

Conexiones de uso activas del servicio de agua potable, por tipo de facturación hasta agosto 2018

Localidad	Tipo de facturación			Total
Localidad	Lectura	Promedio	Asignación	TOtal
Tacna	48900	18011	13990	80901

Fuente: Área Comercial de la EPS TACNA S.A.

Asimismo, se indica, el total de conexiones activas de agua potable activas por facturación, hasta el mes de diciembre del 2018, la cual se detalla en la tabla N°20.

Tabla 20.Conexiones de uso activas del servicio de agua potable, por tipo de facturación hasta diciembre 2018

Mes	Ti	Total		
ivies	Lectura	Promedio	Asignación	Total
Septiembre	49495	17950	13019	80464
Octubre	53556	14490	12445	80491
Noviembre	59485	9243	12191	80919
Diciembre	61738	7566	11800	81104

En ese sentido, a agosto del 2018 el nivel de micromedición de la EPS TACNA S.A. ascendía al 60.44%; y corresponde al total de conexiones de uso facturadas por diferencia de lecturas y con medidor operativo, y hasta diciembre del 2018 ascendió a 76.12%.

Se precisa que, en este caso para determinar el indicador de micromedición no se ha considerado a las conexiones inactivas, debido a que el mayor porcentaje de estas corresponden a habilitaciones urbanas que actualmente se encuentran en proceso de ingreso en la base comercial.

A continuación, se muestra las conexiones de uso activas al mes de agosto del 2018, por tipo de facturación, y por categoría de usuario.

Tabla 21.Conexiones de uso activas del servicio de agua potable, por facturación y categoría de usuario hasta agosto del 2018

Categoría de	Ti	Total		
Usuario	Lectura	Promedio	Asignación	
Social	201	171	25	397
Doméstico	43860	15176	13491	72527
Comercial	4019	2286	356	6661
Estatal	279	221	58	558
Industrial	541	157	60	758
Total	48900	18011	13990	80901

Fuente: Área Comercial de la EPS TACNA S.A.

Asimismo, se indica, el total de conexiones activas de agua potable activas por facturación y por categoría de usuario, hasta el mes de diciembre del 2018, la cual se detalla en las tablas N°22,23,24,25.

Tabla 22.Conexiones de uso activas del servicio de agua potable, por facturación y categoría de usuario a septiembre del 2018

Categoría	Ti	Total			
de Usuario					
	Lectura	Lectura Promedio Asignación			
Social	146	144	22	312	
Doméstico	44426	15186	12452	72064	
Comercial	4081	2238	421	6740	
Estatal	286	221	58	565	
Industrial	556	161	66	783	
Total	49495	17950	13019	80464	

Tabla 23.Conexiones de uso activas del servicio de agua potable, por facturación y categoría de usuario a octubre del 2018

Categoría	Ti	Total		
de Usuario				
Occurre	Lectura	Promedio	Asignación	
Social	147	135	22	304
Doméstico	48185	12016	11890	72091
Comercial	4330	1998	411	6739
Estatal	311	199	59	569
Industrial	583	142	63	788
Total	53556	14490	12445	80491

Tabla 24.Conexiones de uso activas del servicio de agua potable, por facturación y categoría de usuario a noviembre del 2018

Categoría				
de Usuario				
OGGGIIO	Lectura	Promedio	Asignación	
Social	156	126	23	305
oméstico	53417	7449	11646	72512
Comercial	4972	1375	400	6747
Estatal	334	180	57	571
Industrial	606	113	65	784
Total	59485	9243	12191	80919

Tabla 25.Conexiones de uso activas del servicio de agua potable, por facturación y categoría de usuario a diciembre del 2018

Categoría de Usuario	Tip	Total		
_	Lectura	Diciembre Promedio	Asignación	
Social	153	120	24	297
Doméstico	55272	6162	11295	72729
Comercial	5383	990	366	6739
Estatal	322	180	55	557
Industrial	608	114	60	782
Total	61738	7566	11800	81104

Fuente: Elaboración Propia

Finalmente, de acuerdo con la información de la EPS TACNA S.A., existen más de 17 mil conexiones que tienen un medidor con antigüedad de mayor a 5 años, siendo ello uno de los factores que contribuye a incrementar el porcentaje de Agua no Facturada, debido al sub registro de los medidores que responde a la antigüedad de los equipos; lo que a su vez genera pérdidas económicas para la EPS TACNA S.A., pues los volúmenes facturados se alejan de los consumos realizados por los usuarios.

4.3. Presión y continuidad del servicio

• Continuidad Promedio de la localidad de Tacna

En el año 2018, de acuerdo a la información proporcionada por la EPS TACNA S.A., la continuidad promedio del servicio de agua potable en la ciudad de Tacna durante el primer semestre del 2018, fue de 16.78 horas/día, siendo en el mes de marzo la continuidad promedio más baja de 13,1 horas/día y en el mes de julio la continuidad promedio más alta de 18 horas/día, como se aprecia en el siguiente cuadro:

En el año 2018, de acuerdo a la información proporcionada por la EPS TACNA S.A., en el primer semestre la continuidad promedio del servicio de agua potable en la ciudad de Tacna fue de 16,78 horas/día, la continuidad promedio más alta se da en el mes de junio de 18,4 horas/día y la continuidad promedio más baja se da en el mes de marzo de 15,7 horas/día, tal como se observa en la tabla N° 26.

Tabla 26.

Continuidad promedio mensual por sectores en el primer semestre del 2018 (horas/día)

9.80	18.00
	10.00
9.30	8.70
4.80	14.20
4.00	24.00
4.00	24.00
9.40	19.60
9.50	19.50
5.60	15.60
1.90	21.90
7.20	17.20
1.50	11.50
0.00	20.00
2.00	22.00
	9.30 4.80 4.00 4.00 9.40 9.50 5.60 1.90 7.20 1.50 0.00 2.00

	Subsector 1	19.60	19.60	16.70	17.40	17.40	22.10	21.90
SECTOR	Subsector 2	14.40	13.70	14.60	14.60	16.70	16.90	17.00
5	Subsector 3	12.30	10.80	10.80	12.30	13.70	13.20	13.20
	Subsector 4	21.80	21.60	20.60	21.10	21.10	21.20	21.20
	Subsector 19	14.60	14.40	14.40	15.30	15.30	15.30	15.70
	Subsector 20	13.30	12.70	13.40	13.40	16.10	16.10	17.70
SECTOR 6	Subsector 21	16.60	16.60	19.10	19.10	21.90	21.90	21.60
	Subsector 22	11.70	11.70	11.70	11.00	11.00	14.70	13.30
	Subsector 28	24.00	24.00	24.00	24.00	24.00	24.00	24.00
	Subsector 23	12.80	12.80	13.00	13.30	13.30	13.30	14.50
	Subsector 24	16.60	15.60	15.60	19.70	19.70	24.00	20.90
SECTOR 7	Subsector 25	11.60	11.60	12.50	12.30	12.30	14.80	11.40
	Subsector 26	13.00	13.00	11.20	11.20	11.20	14.00	15.20
	Subsector 27	24.00	24.00	24.00	24.00	24.00	24.00	24.00
	MEDIO	16.10	15.80	15.70	16.40	17.20	18.40	17.90
_ ,	O T A O A A							

Fuente: EPS TACNA S.A.

• Presión Promedio de la localidad de Tacna

En el año 2018, de acuerdo a la información proporcionada por la EPS TACNA S.A., en el primer semestre la presión promedio del servicio de agua potable a nivel de localidad de Tacna fue de 17.81 m.c.a., en el mes de marzo se presentó la presión promedio más baja de 17.2 m.c.a. y en el mes de junio se presentó la presión promedio más alta de 18.7 m.c.a., como se aprecia en la tabla N° 27.

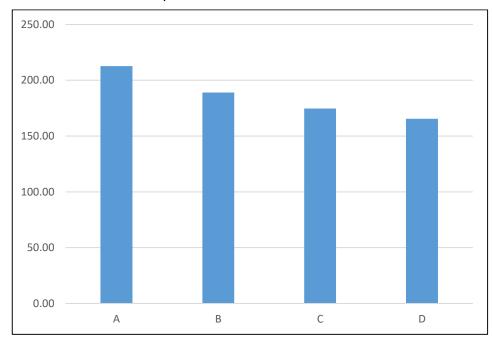
Tabla 27.

Presión Promedio mensual por sectores en el primer semestre del 2018 (m.c.a.)

Sector	Subsector	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio
SECTOR 1	Subsector 10	16	15	16	16	18	22	23
	Subsector 11	15	13	14	14	15	15	15
	Subsector 12	16	16	16	16	16	16	16
	Subsector 15	29	29	29	29	29	29	29
SECTOR 2	Subsector 17	18	17	17	18	19	23	23

	Subsector 18	14	14	14	24	24	26	26
	Subsector 9	15	15	17	17	17	16	16
SECTOR	Subsector 13	18	18	18	18	18	18	18
3	Subsector 14	13	13	16	19	18	18	18
-	Subsector 16	19	20	20	21	21	23	23
	Subsector 5	10	10	11	11	13	13	13
SECTOR	Subsector 6	11	12	15	15	17	17	17
4	Subsector 7	21	21	16	22	22	25	25
•	Subsector 8	18	18	21	21	23	22	22
	Subsector 1	20	20	21	21	21	24	24
SECTOR	Subsector 2	18	18	18	18	18	18	18
5	Subsector 3	13	14	14	14	14	14	14
	Subsector 4	16	16	16	16	17	17	17
	Subsector 19	26	26	26	24	25	25	25
	Subsector 20	14	14	14	14	14	14	15
SECTOR 6	Subsector 21	22	22	15	15	16	16	16
	Subsector 22	15	15	15	15	15	17	16
•	Subsector 28	50	50	51	51	60	60	60
	Subsector 23	14	14	13	14	14	14	15
·	Subsector 24	17	17	17	17	18	18	18
SECTOR 7	Subsector 25	13	13	13	13	13	15	14
•	Subsector 26	14	14	14	14	14	14	14
•	Subsector 27	23	23	23	23	23	24	24
PRO	MEDIO	17,3	17,3	17,2	17,6	18	18,7	18.60
	S TACNA S A	*	•	,	*			

Fuente: EPS TACNA S.A.


4.4. Nivel socioeconómico

En la presente tesis se consideró el factor socioeconómico si este influye en el consumo de agua, para esto, por cada encuesta realizada se observó la vivienda, y se preguntó la cantidad de personas que habitan en cada vivienda, por lo que se detalla los siguientes resultados:

Tabla 28.Dotación de acuerdo al nivel socioeconómico

NIVEL SOCIOECONOMICO	DOTACION(L)
Α	212.63
В	189.03
C	174.63
D	165.48

Fuente: Elaboración Propia

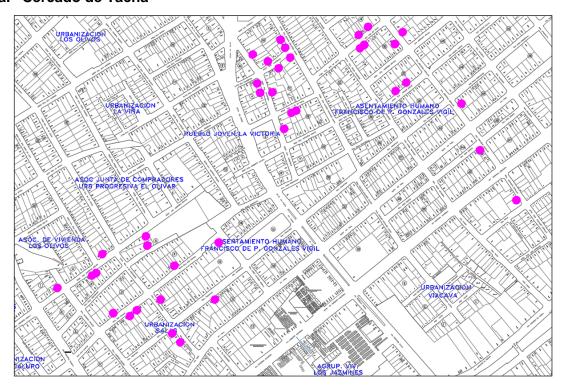
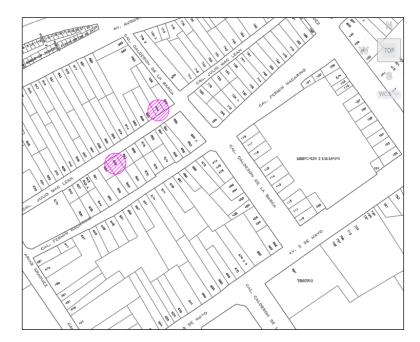
Figura 12. Histograma de dotación de acuerdo al nivel socioeconómico Fuente: Elaboración Propia

4.5. Encuestas

Para poder realizar las encuestas fue necesario dividirlo por distritos, por lo que se encuesto a 40 personas.

En el Anexo N° 02 se puede apreciar la obtención de los consumos mediante los diferentes criterios aplicados en la encuesta, por lo que a continuación se detalla el resumen de dotación de las diferentes personas encuestadas en cada distrito Y la ubicación de las viviendas:

a. Cercado de Tacna

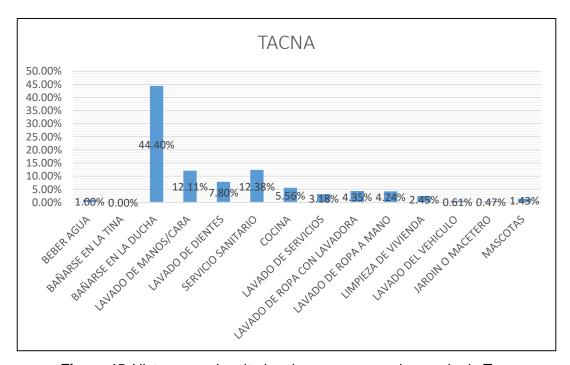

Figura 13. Ubicación de viviendas en el cercado de Tacna – Parte 1 Fuente: Elaboración Propia

Figura 14. Ubicación de viviendas en el cercado de Tacna – Parte 2 Fuente: Elaboración Propia

Tabla 29.Consumo de agua promedio en base a criterios en el cercado de Tacna

Consumo de agua	Tacna (L)
Beber agua	1.85
Bañarse en la tina	0.00
Bañarse en la ducha	81.93
Lavado de manos/cara	22.35
Lavado de dientes	14.40
Servicio sanitario	22.85
Cocina	10.25
Lavado de servicios	5.88
Lavado de ropa con lavadora	8.03
Lavado de ropa a mano	7.83
Limpieza de vivienda	4.53
Vehículo	1.13
Jardín o macetero	0.88
Mascotas	2.64

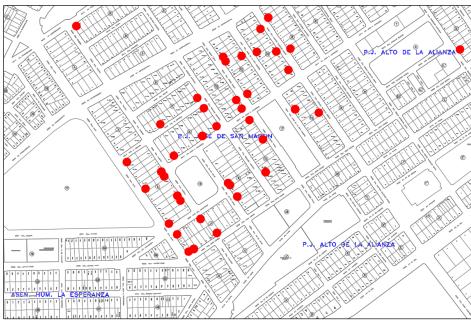


Figura 15. Histograma de criterios de consumo en el cercado de Tacna Fuente: Elaboración Propia

Tabla 30.Dotación según encuestas en el cercado de Tacna

	PERSONA ENCUESTADA	DOTACION (L/HAB/DIA)
1	CORNEJO VARGAS, GILMA	218
2	CAÑI QUISPE, JAVIER	181
3	CONDORI LUQUE, HAYDEE	188
4	LOPEZ JARRA, GLORIA	225
5	VILLANUEVA TEJADA, GUILLERMO	218
6	MONTE DE OCA, LISET	177
7	RETO TEJADA, LILI	311
8	SANCHEZ VILDOSO, LUCIA DEL CARMEN	276
9	RONDON LAZO, NELLY	155
10	CAHUANA MAMANI, MAGALY	174
11	PARIHUANA CRUZ, ELVIRA	156
12	VILLACA SARMINETO, LESLY	152
13	CUTIPA PALZA, JUAN CARLOS	223
14	CARDENAS PARIHANA JOSE CARLOS	185
15	OCHOA FERNANDEZ, MARIO	186
16	VILLACA VELA DE VENIQUE TEODORA	237
17	CABE DURAN, RUBEN	70
18	TAPIA HARO, CARLOS	169
19	COBANA PACHECO, MARIA	165
20	NINA PONCE, OLIVIA	226
21	PAULINA DE PEREZ, CELESTINA	244
22	MENDOZA, MARIA CRISTINA	131
23	ROMAN CAHUANA, LUIS	172
24	VILCA RAMOS, MANUEL	177
25	VALENCIA PEÑA, WILFREDO	181
26	PARIA PARI, DAMIAN	142
27	COAYLA CRUZ CESAR	175
28	CALIZATA QUISPE, KAROL	233
29	FERNANDEZ CANDIA, BRAYAN	106
30	HERMOSA GARAY, FLOR	119
31	PAREJA GRANDA, LIDIA	109
32	LONDORI PEREZ, JULIO	167
33	CONTRERAS, EPIRENIO	205
34	DE POLAR PONCE RODOLFO PIO	165
35	MARCA HUANCA, MARINA	251
36	VIZCARRA GUILLERMO, YANET	118
37	CATACORA GUTIERREZ, FELI	230
38	TORRES MENDIA, SEBASTIAN	148
39	VELARDE CACERES, PAUL	219
40	NOA CABRERA, JENNY	198

b. Distrito Alto de la Alianza

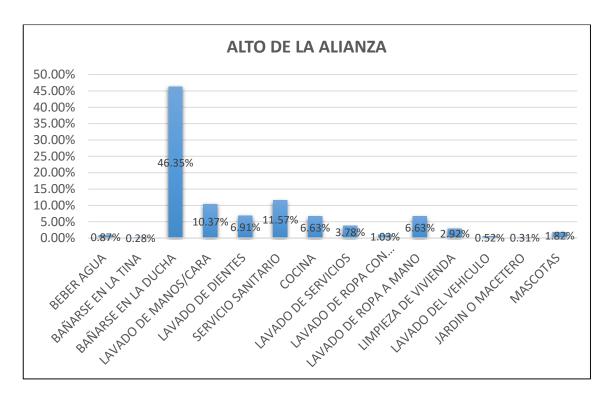


Figura 16. Ubicación de viviendas en el distrito de Alto de la Alianza Fuente: Elaboración Propia

Tabla 31.

Consumo de agua promedio en base a criterios en el distrito de Alto de la Alianza

Consumo de agua	Alto de la Alianza (L)
Beber agua	1.56
Bañarse en la tina	0.50
Bañarse en la ducha	82.81
Lavado de manos/cara	18.53
Lavado de dientes	12.34
Servicio sanitario	20.68
Cocina	11.85
Lavado de servicios	6.75
Lavado de ropa con lavadora	1.84
Lavado de ropa a mano	11.85
Limpieza de vivienda	5.23
Vehículo	0.93
Jardín o macetero	0.56
Mascotas	3.25

Figura 17. Histograma de criterios de consumo en el distrito Alto de la Alianza Fuente: Elaboración Propia

Tabla 32.

Dotación según encuestas en el distrito de Alto de la Alianza

	PERSONA ENCUESTADA	DOTACION (L/HAB/DIA)
1	ALTAMIRANO CHURACAPIA	158
2	ROSAS MENDOZA, BANI DAVID	116
3	MAMANI NAVARRO, JUAN WILBERT	156
4	MANUELO RAMOS, FREDY	104
5	LUPACA CHAMBILLA, JUAN GERARDO	298
6	CALDERON LIMACHE, RUFINA	247
7	MAMANI CORA, LUCILA	163
8	CALAHUILLE CALAHUILLE, EDWIN	140
9	ILLACHURA CHOQUE, LIDIA	307
10	GONZALES ESPINOZA, PATY	169
11	YAPU TICONA, JOSE FELIX	182
12	CALIZAYA GUTIERREZ, ELSA	172
13	FERNANDEZ CATACHURA, LUIS ALBERTO	125
14	FERNANDEZ CATACHURA, JUAN	45
15	CONDORI POMA, MARIA NATIVIDAD	278
16	CONDORI APAZA, LUCY	173
17	SENTULLO JIMENEZ, RENZA	243
18	MACHACA CHIPANA, IRMA	127
19	TICONA NINAJA, ELIZABETH	199
20	MIRANDA TICONA , MARTHA	103

21	MAQUERA INCACUTIPA, FILOMENA	194
22	MAMANI MAMANI BERTHA	165
23	HUAMAN VIVANCO, CLEMENTE	134
24	NINA FLORES, ROCIO	271
25	RIVERA QUISPE, YUDITH	263
26	APAZA MAMANI, ROCIO	189
27	TURPO FLORES, HECTOR	126
28	LLANQUE YUCRA, AMELIA	187
29	GERONIMO MACHACA, ENRIQUE	198
30	CASTILLO MAMANI, ESTIBEN	124
31	AGUILAR DE CANA, ERNESTINA	106
32	GARCIA LAURA, LUISA JULIA	183
33	MAMANI CAIPA, JUAN	133
34	TICONA TORRES, FILOMENA	203
35	QUISPE COLQUEHUANCA, MONICA	114
36	CALIZAYA COAQUIRA, VICENTE	179
37	PAUCAR ROJAS, APOLINARIO	166
38	CATACORA CHIPANA, ROXANA	385
39	PACONPIA VEGA, EDITH	191
40	ALVAREZ MAQUERA, ANDRES	136

c. Distrito de Ciudad Nueva

Figura 18. Ubicación de viviendas en el distrito de Ciudad Nueva – Parte 1 Fuente: Elaboración Propia

Figura 19. Ubicación de viviendas en el distrito de Ciudad Nueva – Parte 2 Fuente: Elaboración Propia

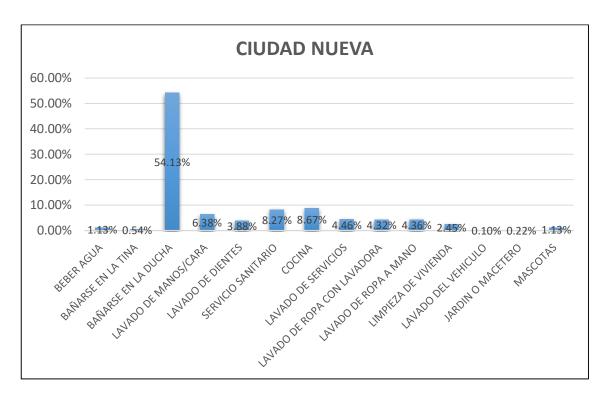


Figura 20. Ubicación de viviendas en el distrito de Ciudad Nueva – Parte 3 Fuente: Elaboración Propia

Tabla 33.

Consumo de agua promedio en base a criterios en el distrito de Ciudad Nueva

Consumo de agua	Ciudad Nueva (L)
Beber agua	2.04
Bañarse en la tina	0.98
Bañarse en la ducha	97.40
Lavado de manos/cara	11.48
Lavado de dientes	6.98
Servicio sanitario	14.88
Cocina	15.60
Lavado de servicios	8.03
Lavado de ropa con lavadora	7.78
Lavado de ropa a mano	7.85
Limpieza de vivienda	4.40
Vehículo	0.18
Jardín o macetero	0.40
Mascotas	2.03

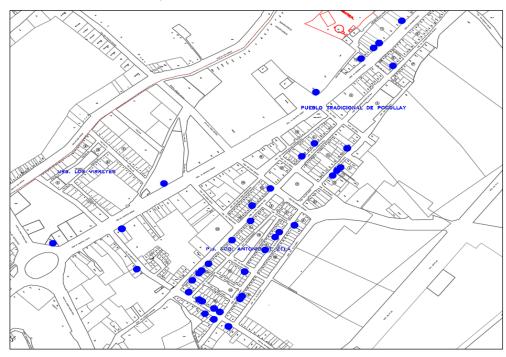


Figura 21. Histograma de criterios de consumo en el distrito Ciudad Nueva Fuente: Elaboración Propia

Tabla 34.Dotación según encuestas en el distrito de Ciudad Nueva

	PERSONA ENCUESTADA	DOTACION (L/HAB/DIA)
1	ESCOBAR GOMEZ, VILMA	247
2	ESCOBAR TICONA, NORA	178
3	ATENCIO AQUINO, SILVIO MORBI	245
4	TORRES CUTIMBO, HUGO	114
5	TICONA, JOSE FERNANDO	109
6	MUÑUICO FLORES, ROBINSON	160
7	CAXI HUASHUALDO, HENRY VIDAL	155
8	CAXI HUASHUALDO, ALEXANDER	125
9	CHOQUE COPARI, MARIELA	153
10	RAMOS HUAICHANI, ANIBAL	112
11	CHOQUE RAMOS, JORGE	210
12	MAMANI ALANOCA, JUAN	127
13	GUTIERREZ CHOQUE, PEDRO	165
14	MEJIA CANO, RUBEN	149
15	MAMANI MAQUERA, MANUELA	255
16	CHAMBILLA NINA, GUADALUPE	152
17	CRUZ QUISPE, CELIA	246
18	URURI MAMANI, MARIA	180
19	VILLANUEVA ALAVE, ALEJANDRA	200
20	MAMANI VARGAS, MARTIN	212
21	SUPO TACORA, MARIANO	156
22	TITO CHAVEZ, TURPO	100
23	QUISPE ROJAS, JUAN	213
24	MENDOZA QUISPE, JORDAN	155
25	LARICO SANTOS, EDGAR	169
26	TINTAYA GARCIA, ROSA	227
27	CHOQUE ARCE, BEATRIZ	204
28	CALLATA PERCA, ENRIQUE	203
29	QUISPE RAMOS, REYNA	202
30	GOMEZ LUQUE, JULIAN	216
31	RIVERA LAURA, FELIPE	193
32	ALAVE URURI, MERCELINA	244
33	URURI FERNANDEZ, VICTORIA	334
34	PUMA ROJAS, JAVIER	136
35	ARRATIA PAZ, HECTOR	223
36	LANDEO TACORA, PAUL	131
37	VILCA LLANQUE, SARA	141
38	GOMEZ MAQUERA, THALIA MARIBEL	149
39	ADUVIRI UCHASARA, JUAN EDGAR	104
40	CAUNA MENDONZA, DIEGO	207

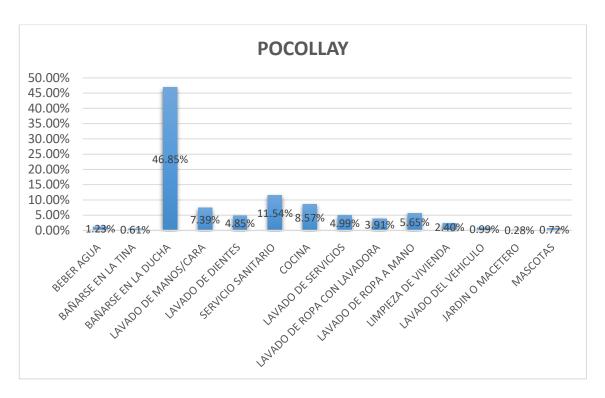

d. Distrito de Pocollay

Figura 22. Ubicación de viviendas en el distrito de Pocollay Fuente: Elaboración Propia

Tabla 35.Consumo de agua promedio en base a criterios en el distrito de Pocollay

Consumo de agua	Pocollay (L)
Beber agua	1.96
Bañarse en la tina	0.98
Bañarse en la ducha	74.60
Lavado de manos/cara	11.78
Lavado de dientes	7.73
Servicio sanitario	18.38
Cocina	13.65
Lavado de servicios	7.95
Lavado de ropa con lavadora	6.23
Lavado de ropa a mano	9.00
Limpieza de vivienda	3.83
Vehículo	1.58
Jardín o macetero	0.45
Mascotas	2.03

Figura 23. Histograma de criterios de consumo en el distrito de Pocollay Fuente: Elaboración Propia

Tabla 36.Dotación según encuestas en el distrito de Pocollay

	PERSONA ENCUESTADA	DOTACION (L/HAB/DIA)	
1	ROJAS TITO ELENA	119	
2	COPA HUAYTA JUAN	153	
3	QUISPE M NICANOR	161	
4	CONDORI C LIDEZ	133	
5	JARA LINARES ROSARIO	162	
6	VARGAS C JULIO	140	
7	LOZA FERNANDEZ HENRY	169	
8	CAHUANA CHOQUE, NANCY	194	
9	MEZA MOSTAJO NELLY VERONICA	171	
10	QUIONEZ ANGELA	115	
11	ESPINOZA VIDAURE ROSANNA FRANCESCA	159	
12	CHILE MAYTA EMILIO	180	
13	QUENTA CHIPANA FLORA	116	
14	REYNOSO CH HECTOR	149	
15	BALUARTE O CALIXTO	151	
16	FLORES MARTORELL CARLOS MANUEL	222	
17	REJAS CARPIO	149	
18	GUTIERREZ LAIME, HUGO	175	
19	YEIRA, VANESSA	155	
20	MAQUERA CCAPIRA, CARMEN	167	
21	CHOQUECOTA, ALEX	130	
22	RODRIGUEZ, JOSE MIGUEL	204	

23	QUISPE, MARIA	189
24	ESPINAR LOPEZ, REINOSO	162
25	ZAPATA EDILBERTA	146
26	SALINAS CORREA JOSE ENRIQUE	160
27	LARICO GREGORIO	109
28	QUISPE Q ANTONIO	171
29	VARGAS TORRES, JESUS	160
30	DELGADO ARISACA DANITZA CORAZON	130
31	AYCA FERNANDEZ, FABIOLA	212
32	AGUILAR TAPIA, LUZ	146
33	APAZA, OSVALDO TEODORO	209
34	PASTOR VEGA, EDWIN	172
35	MAMANI CONDORI GUMERCIND	156
36	ACHO BARRIOS RAUL	169
37	QUINONES CH ESTEBAN	160
38	HUANACUNI TICONA, HELADIO	154
39	CHAMBILLA CHIPANA MARIA LOURDES	160
40	PADILLA GUTIERREZ, LIZ	213

e. Distrito de Gregorio Albarracin Lanchipa

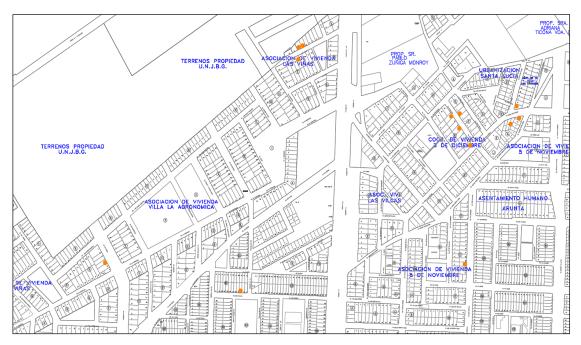
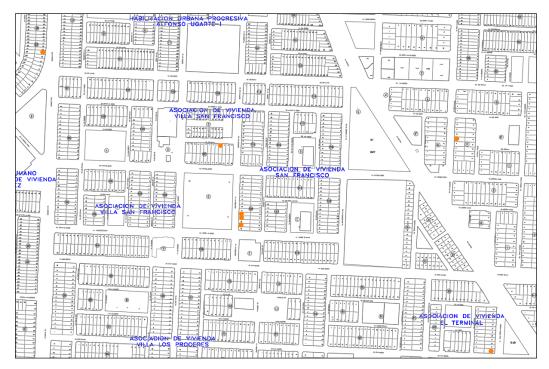



Figura 24. Ubicación de viviendas en el distrito de Gregorio Albarracín Lanchipa – Parte 1 Fuente: Elaboración Propia

Figura 25. Ubicación de viviendas en el distrito de Gregorio Albarracín Lanchipa – Parte 2 Fuente: Elaboración Propia

Figura 26. Ubicación de viviendas en el distrito de Gregorio Albarracín Lanchipa – Parte 3 Fuente: Elaboración Propia

Figura 27. Ubicación de viviendas en el distrito de Gregorio Albarracín Lanchipa – Parte 4 Fuente: Elaboración Propia

Tabla 37.Consumo de agua promedio en base a criterios en el distrito de Gregorio Albarracín Lanchipa

Consumo de agua	Gregorio Albarracín Lanchipa (L)
Beber agua	1.91
Bañarse en la tina	3.40
Bañarse en la ducha	90.20
Lavado de manos/cara	12.19
Lavado de dientes	8.66
Servicio sanitario	19.25
Cocina	12.45
Lavado de servicios	6.90
Lavado de ropa con lavadora	11.80
Lavado de ropa a mano	7.63
Limpieza de vivienda	4.68
Vehículo	2.93
Jardín o macetero	0.80
Mascotas	2.88

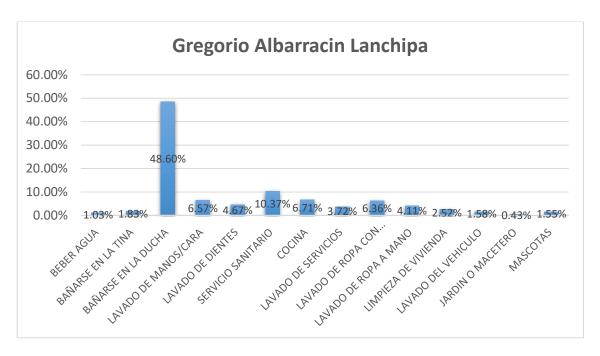


Figura 28. Histograma de criterios de consumo en el distrito de Gregorio Albarracín Lanchipa
Fuente: Elaboración Propia

Interpretación de resultados de histogramas

Mediante los histogramas se muestra que el mayor consumo de agua se debe al bañarse en ducha en todos los distritos de la ciudad de Tacna, esto debido a que algunos pobladores no tienen cultura del ahorro del agua, y es por ello que no miden su gasto dejando abierto el caño sin estar usándolo, lo que esto ocasiona que ocurra pérdida de agua, sin tener en cuenta la falta de agua en la ciudad.

Tabla 38.

Dotación según encuestas en el distrito de Gregorio Albarracín Lanchipa

	PERSONA ENCUESTADA	DOTACION (L/HAB/DIA)
1	MUSAJA ROBLES EDA MARIA	137
2	CAHUI YUNGANINA, SOLEDAD	211
3	TORRES QUIÑONEZ, DELIA	125
4	GUEVARA CAXI NANCY	198
5	FLORES VELASQUEZ DINA	272
6	MARRON GUTIERREZ, LIVIA	274
7	AGUILAR, ABEL	207
8	ARREDONDO COLQUE, OTMAR	109
9	CAHUANA MAMANI, SONIA	166
10	QUISPE CONDE IVETTE EDITH	113
11	CALLO ALIANA, ANTHONY	176
12	MAMANI PILCO MARIA LIDIA	190

13	CONDORI GUTIERREZ, MERY	197
14	MAQUERA APAZA, MIRIAM YHUDITH	186
15	TICONA MAMANI RAUL CARLOS	209
16	MORALES FELICIANO, LILA JHULIANA	259
17	MUSAJA CHAMBE BRIGIDA	143
18	CALMETT VELASQUEZ, ENMA GRACIELA	140
19	BOCANEGRA ZEGARRA, YOLI	152
20	TURPO VILAVILA, MARICRUZ	155
21	CULMIRI MARCA, ALICIA	134
22	GUTIERREZ MAMANI MARIANO	132
23	JAHUIRA ANAHUA TEOFILA	155
24	MAMANI QUISPE PEDRO GABRIEL	199
25	SOTO, MARINA	163
26	CARDENAS SAMILLAN, FIORELLA	257
27	YAVAR CHIPIANA, LUCY	206
28	VILLALOBOS AQUINO, JOSE	102
29	CHUCULLA HUASHUA, JORGE	186
30	VIZA ROQUE LUCIANO FELIX	238
31	VALDIVIA DE DURAN, MARTHA	162
32	ABILES BRAVO, NICOLAS	148
33	BELLO PANIAGUA, JHONNY	180
34	PEREZ, EDYSON	263
35	CUTIPA SUCA FREDY	297
36	SAMAN, JUAN	170
37	CONISLLA CASTILLO CESAR MARTIN	158
38	LIENDO CARPIO JOSE CRUZ	232
39	GALLEGOS CANCHARI, RAQUEL	284
40	BARRIENTOS SOSA, YESICA	141

4.6. Consumos mensuales EPS Tacna S.A.

Se obtuvo la base de datos de toda la ciudad de Tacna, obtenido por el programa SIINCO con la ayuda de EPS Tacna S.A., por lo se realizó la elección de consumos solo de las personas que fueron encuestadas en los meses de septiembre, octubre, noviembre y diciembre.

En el Anexo N° 03 se puede apreciar los consumos mensuales de acuerdo a las lecturas realizadas por la EPS Tacna, demostrando los diferentes métodos de facturación considerando lo medido, asignado y promedio; relacionando con la variable habitante por lote, por lo que a continuación se detalla el resumen de dotación:

Tabla 39.Dotación según consumos de la EPS Tacna en el cercado de Tacna

	PERSONA ENCUESTADA	DOTACION (L/HAB/DIA)		
1	CORNEJO VARGAS, GILMA	225		
2	CAÑI QUISPE, JAVIER	111		
3	CONDORI LUQUE, HAYDEE	35		
4	LOPEZ JARRA, GLORIA	46		
5	VILLANUEVA TEJADA, GUILLERMO	61		
6	MONTE DE OCA, LISET	119		
7	RETO TEJADA, LILI	332		
8	SANCHEZ VILDOSO, LUCIA DEL CARMEN	36		
9	RONDON LAZO, NELLY	128		
10	CAHUANA MAMANI, MAGALY	72		
11	PARIHUANA CRUZ, ELVIRA	71		
12	VILLACA SARMINETO, LESLY	94		
13	CUTIPA PALZA, JUAN CARLOS	222		
14	CARDENAS PARIHANA JOSE CARLOS	204		
15	OCHOA FERNANDEZ, MARIO	105		
16	VILLACA VELA DE VENIQUE TEODORA	225		
17	CABE DURAN, RUBEN	60		
18	TAPIA HARO, CARLOS	156		
19	COBANA PACHECO, MARIA	253		
20	NINA PONCE, OLIVIA	208		
21	PAULINA DE PEREZ, CELESTINA	31		
22	MENDOZA, MARIA CRISTINA	111		
23	ROMAN CAHUANA, LUIS	142		
24	VILCA RAMOS, MANUEL	170		
25	VALENCIA PEÑA, WILFREDO	150		
26	PARIA PARI, DAMIAN	187		
27	COAYLA CRUZ CESAR	138		
28	CALIZATA QUISPE, KAROL	190		
29	FERNANDEZ CANDIA, BRAYAN	153		
30	HERMOSA GARAY, FLOR	192		
31	PAREJA GRANDA, LIDIA	114		
32	LONDORI PEREZ, JULIO	142		
33	CONTRERAS, EPIRENIO	86		
34	DE POLAR PONCE RODOLFO PIO	117		
35	MARCA HUANCA, MARINA	271		
36	VIZCARRA GUILLERMO, YANET	93		
37	CATACORA GUTIERREZ, FELI	125		
38	TORRES MENDIA, SEBASTIAN	97		
39	VELARDE CACERES, PAUL	146		
40	NOA CABRERA, JENNY	123		

Tabla 40.Dotación según consumos de la EPS Tacna en el distrito de Alto de la Alianza

	PERSONA ENCUESTADA	DOTACION (L/HAB/DIA)		
1	ALTAMIRANO CHURACAPIA	108		
2	ROSAS MENDOZA, BANI DAVID	113		
3	MAMANI NAVARRO, JUAN WILBERT	189		
4	MANUELO RAMOS, FREDY	83		
5	LUPACA CHAMBILLA, JUAN GERARDO	65		
6	CALDERON LIMACHE, RUFINA	133		
7	MAMANI CORA, LUCILA	175		
8	CALAHUILLE CALAHUILLE, EDWIN	80		
9	ILLACHURA CHOQUE, LIDIA	61		
10	GONZALES ESPINOZA, PATY	154		
11	YAPU TICONA, JOSE FELIX	208		
12	CALIZAYA GUTIERREZ, ELSA	160		
13	FERNANDEZ CATACHURA, LUIS ALBERTO	133		
14	FERNANDEZ CATACHURA, JUAN	142		
15	CONDORI POMA, MARIA NATIVIDAD	110		
16	CONDORI APAZA, LUCY	172		
17	SENTULLO JIMENEZ, RENZA	219		
18	MACHACA CHIPANA, IRMA	113		
19	TICONA NINAJA, ELIZABETH	167		
20	MIRANDA TICONA , MARTHA	183		
21	MAQUERA INCACUTIPA, FILOMENA	222		
22	MAMANI MAMANI BERTHA	101		
23	HUAMAN VIVANCO, CLEMENTE	23		
24	NINA FLORES, ROCIO	67		
25	RIVERA QUISPE, YUDITH	60		
26	APAZA MAMANI, ROCIO	57		
27	TURPO FLORES, HECTOR	81		
28	LLANQUE YUCRA, AMELIA	127		
29	GERONIMO MACHACA, ENRIQUE	86		
30	CASTILLO MAMANI, ESTIBEN	178		
31	AGUILAR DE CANA, ERNESTINA	142		
32	GARCIA LAURA, LUISA JULIA	83		
33	MAMANI CAIPA, JUAN	97		
34	TICONA TORRES, FILOMENA	258		
35	QUISPE COLQUEHUANCA,MONICA	83		
36	CALIZAYA COAQUIRA, VICENTE	79		
37	PAUCAR ROJAS, APOLINARIO	75		
38	CATACORA CHIPANA, ROXANA	93		
39	PACONPIA VEGA, EDITH	110		
40	ALVAREZ MAQUERA, ANDRES	190		

Tabla 41.Dotación según consumos de la EPS Tacna en el distrito de Ciudad Nueva

DOTACION DOTACION					
	PERSONA ENCUESTADA	(L/HAB/DIA)			
1	ESCOBAR GOMEZ, VILMA	30			
2	ESCOBAR TICONA, NORA	53			
3	ATENCIO AQUINO, SILVIO MORBI	67			
4	TORRES CUTIMBO, HUGO	133			
5	TICONA, JOSE FERNANDO	53			
6	MUÑUICO FLORES, ROBINSON	44			
7	CAXI HUASHUALDO, HENRY VIDAL	89			
8	CAXI HUASHUALDO, ALEXANDER	63			
9	CHOQUE COPARI, MARIELA	198			
10	RAMOS HUAICHANI, ANIBAL	123			
11	CHOQUE RAMOS, JORGE	73			
12	MAMANI ALANOCA, JUAN	38			
13	GUTIERREZ CHOQUE, PEDRO	111			
14	MEJIA CANO, RUBEN	42			
15	MAMANI MAQUERA, MANUELA	146			
16	CHAMBILLA NINA, GUADALUPE	35			
17	CRUZ QUISPE, CELIA	90			
18	URURI MAMANI, MARIA	6			
19	VILLANUEVA ALAVE, ALEJANDRA	28			
20	MAMANI VARGAS, MARTIN	62			
21	SUPO TACORA, MARIANO	98			
22	TITO CHAVEZ, TURPO	82			
23	QUISPE ROJAS, JUAN	88			
24	MENDOZA QUISPE, JORDAN	39			
25	LARICO SANTOS, EDGAR	98			
26	TINTAYA GARCIA, ROSA	99			
27	CHOQUE ARCE, BEATRIZ	74			
28	CALLATA PERCA, ENRIQUE	44			
29	QUISPE RAMOS, REYNA	0			
30	GOMEZ LUQUE, JULIAN	50			
31	RIVERA LAURA, FELIPE	63			
32	ALAVE URURI, MERCELINA	83			
33	URURI FERNANDEZ, VICTORIA	103			
34	PUMA ROJAS, JAVIER	82			
35	ARRATIA PAZ, HECTOR	110			
36	LANDEO TACORA, PAUL	180			
37	VILCA LLANQUE, SARA	67			
38	GOMEZ MAQUERA, THALIA MARIBEL	125			
39	ADUVIRI UCHASARA, JUAN EDGAR	110			
40	CAUNA MENDONZA, DIEGO	129			

Tabla 42.Dotación según consumos de la EPS Tacna en el distrito de Pocollay

	PERSONA ENCUESTADA	DOTACION (L/HAB/DIA)
1	ROJAS TITO ELENA	160
2	COPA HUAYTA JUAN	163
3	QUISPE M NICANOR	125
4	CONDORI C LIDEZ	133
5	JARA LINARES ROSARIO	160
6	VARGAS C JULIO	120
7	LOZA FERNANDEZ HENRY	208
8	CAHUANA CHOQUE, NANCY	225
9	MEZA MOSTAJO NELLY VERONICA	150
10	QUIONEZ ANGELA	104
11	ESPINOZA VIDAURE ROSANNA FRANCESCA	133
12	CHILE MAYTA EMILIO	114
13	QUENTA CHIPANA FLORA	89
14	REYNOSO CH HECTOR	192
15	BALUARTE O CALIXTO	127
16	FLORES MARTORELL CARLOS MANUEL	207
17	REJAS CARPIO	113
18	GUTIERREZ LAIME, HUGO	167
19	,	128
20	MAQUERA CCAPIRA, CARMEN	92
21	CHOQUECOTA, ALEX	167
22	•	181
23	•	208
24	ESPINAR LOPEZ, REINOSO	95
25	ZAPATA EDILBERTA	142
	SALINAS CORREA JOSE ENRIQUE	113
27	LARICO GREGORIO	122
28	QUISPE Q ANTONIO	162
29	VARGAS TORRES, JESUS	125
30	DELGADO ARISACA DANITZA CORAZON	117
31	AYCA FERNANDEZ, FABIOLA	117
32	AGUILAR TAPIA, LUZ	152
33	APAZA, OSVALDO TEODORO	67
34	PASTOR VEGA, EDWIN	96
35	MAMANI CONDORI GUMERCIND	190
36	ACHO BARRIOS RAUL	165
37	QUINONES CH ESTEBAN	89
38	HUANACUNI TICONA, HELADIO	135
39	CHAMBILLA CHIPANA MARIA LOURDES	139
40	PADILLA GUTIERREZ, LIZ	119

Tabla 43.Dotación según consumos de la EPS Tacna en el distrito de Gregorio Albarracín Lanchipa

	PERSONA ENCUESTADA	DOTACION (L/HAB/DIA)
1	MUSAJA ROBLES EDA MARIA	115
2	CAHUI YUNGANINA, SOLEDAD	136
3	TORRES QUIÑONEZ, DELIA	146
4	GUEVARA CAXI NANCY	78
5	FLORES VELASQUEZ DINA	55
6	MARRON GUTIERREZ, LIVIA	186
7	AGUILAR, ABEL	110
8	ARREDONDO COLQUE, OTMAR	156
9	CAHUANA MAMANI, SONIA	120
10	QUISPE CONDE IVETTE EDITH	150
11	CALLO ALIANA, ANTHONY	56
12	MAMANI PILCO MARIA LIDIA	140
13	CONDORI GUTIERREZ, MERY	133
14	MAQUERA APAZA, MIRIAM YHUDITH	167
15	TICONA MAMANI RAUL CARLOS	26
16	MORALES FELICIANO, LILA JHULIANA	50
17	MUSAJA CHAMBE BRIGIDA	89
18	CALMETT VELASQUEZ, ENMA GRACIELA	133
19	BOCANEGRA ZEGARRA, YOLI	65
20	TURPO VILAVILA, MARICRUZ	175
21	CULMIRI MARCA, ALICIA	128
22	GUTIERREZ MAMANI MARIANO	161
23	JAHUIRA ANAHUA TEOFILA	33
24	MAMANI QUISPE PEDRO GABRIEL	83
25	SOTO, MARINA	56
26	CARDENAS SAMILLAN, FIORELLA	53
27	YAVAR CHIPIANA, LUCY	125
28	VILLALOBOS AQUINO, JOSE	100
29	CHUCULLA HUASHUA, JORGE	126
30	VIZA ROQUE LUCIANO FELIX	107
31	VALDIVIA DE DURAN, MARTHA	25
32	ABILES BRAVO, NICOLAS	167
33	BELLO PANIAGUA, JHONNY	69
34	PEREZ, EDYSON	121
35	CUTIPA SUCA FREDY	102
36	SAMAN, JUAN	162
37	CONISLLA CASTILLO CESAR MARTIN	73
38	LIENDO CARPIO JOSE CRUZ	167
39	GALLEGOS CANCHARI, RAQUEL	144
40	BARRIENTOS SOSA, YESICA	87

4.7. Población servida de agua potable

De acuerdo a la base comercial de la EPS TACNA S.A., la población servida de agua potable en el año 2018 asciende a 289959 habitantes, que corresponde a la población que se abastece de agua potable a través de sus conexiones domiciliarias.

En tal sentido, en el presente estudio solo se tomará la población de categoría doméstica la cual tiene un total de 72729 conexiones en la ciudad de Tacna en el mes de diciembre de 2018, por lo que resultaría 4 habitantes por vivienda.

4.8. Volúmenes facturados de agua potable

A continuación, se detalla los volúmenes facturados y cantidad de conexiones por mes en el año 2018, de todos los usuarios de la ciudad de Tacna.

Tabla 44. *Volúmenes facturados*

	LEC	TURA	PRO	MEDIO	ASIGN	ACION	то	TAL
MES	N° CONE X	VOL (m3/mes)	N° CONEX	VOL (m3/mes)	N° CONEX	VOL (m3/me s)	N° CONEX	VOL (m3/mes)
SEP	44426	473983	15186	230653	12452	163437	72064	868073
OCT	48185	570008	12016	188604	11890	152796	72091	911408
NOV	53417	661382	7449	120521	11646	147997	72512	929900
DIC	55272	681391	6162	95052	11295	141048	72729	917491

Fuente: Elaboración Propia

4.9. Consumo por habitante

De acuerdo a la base comercial, podemos calcular el consumo por habitante de toda la ciudad de Tacna, en la categoría doméstica.

En el siguiente resumen se tomó los usuarios que consumen más de 100 litros por día, ya que de acuerdo al OMS se considera apropiado que un habitante consuma más de dicha cantidad. Asimismo, se consideró un porcentaje de 37% de agua no facturada.

Tabla 45.

Consumo por habitante

MES	N° CONEX	DENSIDAD	POBLACION	VOL (m3/mes)	VOL (lt/d)	CONSUMO (lt(hab/dia)
SEP	35740	4	142960	467769	15592300	109.07
ОСТ	39663	4	158652	564203	18806766.67	118.54
NOV	44326	4	177304	655324	21844133.33	123.20
DIC	46298	4	185192	650036	21667866.67	117.00
					PROMEDIO	116.95
					PÉRDIDAS(37%)	43.27
					CONSUMO POR HABITANTE	160.23

4.10. Resultados del estudio de dotación

Con las dotaciones obtenidas, mediante encuestas y consumos mensuales de la EPS TACNA S.A., se importaron los datos al programa estadístico SPSS en el cual se halló la media para cada distrito, filtrando los valores menores a 100 litros ya que la OMS indica que para tener una buena calidad de vida el consumo mínimo es 100 litros.

En el Anexo N° 04 se puede apreciar el resumen de consumos de agua potable por distrito.

A continuación, se detalla las dotaciones por distrito:

Tabla 46.Dotación por distrito

Dotación								
	Distrito	Tacna	Alto de la Alianza	Ciudad Nueva	Pocollay	Gregorio Albarracín Lanchipa		
N	Válido	67	63	50	74	64		
	Perdidos	13	17	30	6	16		
Dotación (L/hab/día)		180.11	173.20	171.35	155.84	168.72		

4.11. Análisis de información

Se procedió a realizar el cálculo hidráulico utilizando un expediente técnico aprobado por distrito para comparar el caudal de diseño aplicando la dotación del RNE y la dotación obtenida según los estudios realizados en la presente tesis.

En el Anexo N° 05 se puede apreciar la memoria de cálculo hidráulico, donde se plasmó los diferentes cálculos con la información procesada anteriormente, relacionando las variables conocidas:

- Cantidad de lotes
- Dotación
- Habitantes por lote
- Tasa de crecimiento
- Periodo de diseño

A continuación, se muestra el resumen de caudales de diseño por expediente técnico de cada distrito:

Tabla 47.Comparación de caudales

Distrito	Expediente Técnico	Caudal de diseño según E.T. (L/s)	Caudal de diseño según estudios (L/s)
Tacna	Rehabilitación de la capacidad de prestación del servicio de agua potable y alcantarillado en la Junta Vecinal San Martin de Porres Dist. De Tacna	9.32	7.63
Ciudad Nueva	Mejoramiento de las redes agua y desagüe de la ampliación Ciudad Nueva, Distrito de Ciudad Nueva - Tacna - Tacna	47.11	37.46
Pocollay	Renovación de Red Matriz D=160mm de agua potable entre la Calle San Martin y Jorge Basadre (Cras)	6.43	4.55
Cono Sur	Mejoramiento del servicio de agua potable en los tramos de la Av. Municipal y las Calles Andrés Bello y Tarata de la J.V. 3 de diciembre del distrito de Gregorio Albarracín - Tacna - Tacna	0.60	0.46
Alto de la Alianza	Mejoramiento de los servicios de alcantarillado y agua potable en el pueblo Joven José de San Martin, Distrito Alto de la Alianza-Tacna-Tacna	13.11	10.56

4.12. Modelamiento de las redes de agua potable con software - WATERGEMS

Se indica que para el modelamiento de las redes de agua potable se tomó solo un expediente de los mencionados en el ítem anterior, que es el perteneciente al distrito de Alto de la Alianza, teniendo como nombre del proyecto "Mejoramiento de los servicios de alcantarillado y agua potable en el pueblo Joven José de San Martin, Distrito Alto de la Alianza-Tacna"

Con la ayuda de los planos del expediente técnico se realizó el trazado de la red en el software; por lo que con el plano de redes de agua potable proyectadas se procedió a dibujar la red de agua potable las cuales detallan la ubicación de los nodos y la longitud de las tuberías, y el plano de influencia sirvió para la ubicación de los lotes y la cantidad de los mismos.

107

Se detalla que la red de distribución se proyectó en circuito abierto, por lo tanto,

las redes proyectadas conectadas a las redes existentes de las calles podrían

producir cambios en la dirección del caudal que actualmente circula en esas

redes. El dimensionamiento se realizó en base a cálculos hidráulicos que

aseguren la presión y el caudal.

Se adjunta plano de ubicación, plano de área de influencia y plano topográfico

en Anexos 6, 7 y 8 respectivamente.

4.12.1. Características de las redes

La distribución de las redes de agua potable, está constituida de 43 tramos de

tuberías unidas por 33 nodos, mediante las cuales abastece de agua potable a

las viviendas del pueblo joven José de San Martin en el distrito Alto de la Alianza

Consideraciones de Diseño para el Análisis

Las características físicas de las tuberías necesarias para el diseño de la red de

agua potable son:

Material: PVC

Rugosidad (n): 0.0015 mm

- Viscosidad (*m*2/s): 1.004 E-06

- Coeficiente de Hazen Williams (C): 150

Temperatura: 20 °C

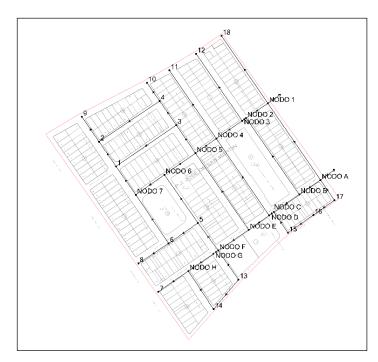
4.12.2. Resultados obtenidos con el programa WATERGEMS

La red planteada se diseñó en el programa WATERGEMS con los diámetros

comerciales donde se calculó las velocidades y caudales en los diferentes

tramos; y se halló las presiones en los nudos.

A continuación, se muestra los datos obtenidos con la ayuda del WATERGEMS:


a. Presiones en los nudos

En la figura 29 se muestra la ubicación de los nudos, en esta misma se

detalla que se consideró las redes existentes y proyectadas al momento de

diseñar, teniendo como nudos pertenecientes a la red proyectada desde el

nudo 1 al 7 y desde el nudo A al H.

Figura 29. Ubicación de nudos Fuente: Elaboración Propia

Datos obtenidos con el caudal de diseño del expediente técnico aprobado

Tabla 48.Presiones obtenidas en los nudos con el caudal de diseño del expediente técnico aprobado

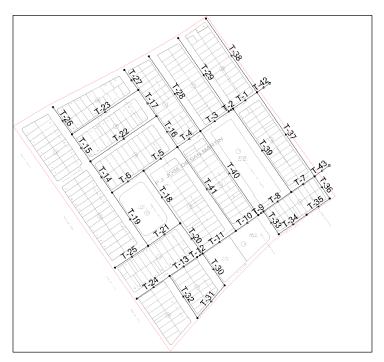
NODOS	ELEVACION	CAUDAL DE DISEÑO	PRESION	ALTURA PIEZOMETRICA
NODO 1	630.2	1.33	18.83	649.07
NODO 2	627.9	0.26	19.22	647.16
NODO 3	627.7	0.47	18.82	646.56
NODO 4	625.5	1.18	19.69	645.23
NODO 5	623.5	1.83	20.84	644.39
NODO 6	620.9	0.56	23.06	644.01
NODO 7	618.2	2.24	25.12	643.37
NODO A	628.5	0.65	20.91	649.46
NODO B	626.0	1.40	21.96	648.01
NODO C	623.4	0.26	23.35	646.80
NODO D	623.0	0.21	23.51	646.56
NODO E	621.1	0.56	24.51	645.66
NODO F	618.0	0.65	26.61	644.66
NODO G	617.6	0.21	26.95	644.61
NODO H	614.7	1.30	29.57	644.33
1	618.2	0.00	24.90	643.15

2	618.2	0.00	24.50	642.75
3	623.9	0.00	19.37	643.31
4	623.0	0.00	19.72	642.76
5	619.5	0.00	24.47	644.02
6	616.1	0.00	27.21	643.37
7	615.3	20.00	28.85	644.21
8	615.2	10.00	27.60	642.85
9	616.2	10.00	26.01	642.26
10	622.5	10.00	19.88	642.42
11	624.9	10.00	18.93	643.87
12	627.4	10.00	17.78	645.21
13	616.2	10.00	26.91	643.17
14	612.6	20.00	30.29	642.95
15	622.5	0.00	24.42	646.97
16	624.8	10.00	22.34	647.18
17	627.0	0.00	21.38	648.43
18	630.0	10.00	17.69	647.72

Fuente: Elaboración Propia

Datos obtenidos con el caudal de diseño de los estudios realizados en la presente tesis

Tabla 49.Presiones obtenidas en los nudos con el caudal de diseño de los estudios realizados


NODOS	ELEVACION	CAUDAL DE DISEÑO	PRESION	ALTURA PIEZOMETRICA
NODO 1	630.2	1.05	19.32	649.56
NODO 2	627.9	0.21	19.50	647.44
NODO 3	627.7	0.37	19.08	646.82
NODO 4	625.5	0.93	19.56	645.10
NODO 5	623.5	1.44	20.33	643.87
NODO 6	620.9	0.46	22.26	643.20
NODO 7	618.2	1.76	24.56	642.81
NODO A	628.5	0.51	21.66	650.21
NODO B	626.0	1.27	22.07	648.11
NODO C	623.4	0.21	23.03	646.47
NODO D	623.0	0.16	23.03	646.08
NODO E	621.1	0.47	23.50	644.65
NODO F	618.0	0.51	25.06	643.11
NODO G	617.6	0.16	25.36	643.01
NODO H	614.7	1.02	27.74	642.50
1	618.2	0.00	24.49	642.74

2	618.2	0.00	24.26	642.51
3	623.9	0.00	19.01	642.95
4	623.0	0.00	19.50	642.54
5	619.5	0.00	23.51	643.06
6	616.1	0.00	26.61	642.77
7	615.3	16.00	26.91	642.27
8	615.2	8.00	27.17	642.43
9	616.2	8.00	25.94	642.19
10	622.5	8.00	19.77	642.31
11	624.9	8.00	19.26	644.20
12	627.4	8.00	18.49	645.93
13	616.2	8.00	25.70	641.95
14	612.6	16.00	29.09	641.75
15	622.5	0.00	24.35	646.90
16	624.8	8.00	22.58	647.42
17	627.0	0.00	21.90	648.95
18	630.0	8.00	18.63	648.67

Fuente: Elaboración Propia

b. Calculo de diámetros en las tuberías, velocidades y caudales

En la figura 30 se muestra las redes tanto existentes y proyectadas, teniendo como tuberías pertenecientes a la red proyectada desde la T-1 al T-6 y desde T-7 al T-24.

Figura 30. Ubicación de las tuberías Fuente: Elaboración Propia

Datos obtenidos con el caudal de diseño del expediente técnico aprobado

Tabla 50.Velocidades y caudales obtenidos en las tuberías con el caudal de diseño del expediente técnico aprobado

TUBERIA	LONGITUD	DIAMETRO	VELOCIDAD	CAUDAL
T-1	56.77	110	2.12	20.14
T-2	10.35	110	2.85	27.13
T-3	56.05	110	1.75	16.66
T-4	44.85	110	1.55	14.73
T-5	65.10	110	0.83	7.85
T-6	93.85	110	0.89	8.47
T-7	55.30	200	2.70	84.83
T-8	56.20	200	2.42	76.18
T-9	9.80	200	2.61	82.08
T-10	45.86	200	2.31	72.62
T-11	65.90	200	2.01	63.06
T-12	10.27	200	1.13	35.36
T-13	55.15	200	1.12	35.15
T-14	63.44	110	0.63	5.94
T-15	51.51	110	0.96	9.17
T-16	62.42	110	1.48	14.06
T-17	51.66	110	1.14	10.83
T-18	108.20	110	0.12	-1.18
T-19	106.18	110	0.03	0.29
T-20	59.22	110	1.15	-10.9
T-21	75.16	110	1.02	9.71
T-22	142.22	110	0.34	-3.22
T-23	139.79	110	0.09	0.83
T-24	64.48	200	0.64	20.00
T-25	56.23	110	1.05	10.00
T-26	52.78	110	1.05	10.00
T-27	36.90	110	1.05	10.00
T-28	148.53	110	1.05	10.00
T-29	146.08	110	1.05	10.00
T-30	66.94	110	1.70	16.15
T-31	57.27	110	0.65	6.15
T-32	81.81	110	1.46	-13.85
T-33	45.82	110	0.65	-6.16
T-34	56.58	110	0.65	-6.16
T-35	55.63	110	1.70	-16.16
T-36	46.03	110	1.70	-16.16

T-37	166.43	110	0.50	4.77
T-38	146.33	110	1.05	10.00
T-39	167.03	110	0.76	-7.25
T-40	167.25	110	0.97	-9.24
T-41	167.96	110	0.95	-9.01
T-42	50.00	110	2.81	-26.70
T-43	50.00	200	3.39	-106.41

Fuente: Elaboración Propia

Datos obtenidos con el caudal de diseño de los estudios realizados en la presente tesis

Tabla 51.Velocidades y caudales obtenidos en las tuberías con el caudal de diseño de los estudios realizados

TUBERIA	LONGITUD	DIAMETRO	VELOCIDAD	CAUDAL
T-1	56.77	110	2.24	21.33
T-2	10.35	110	2.90	27.52
T-3	56.05	110	2.02	19.15
T-4	44.85	110	1.90	18.05
T-5	65.10	110	1.11	10.60
T-6	93.85	110	0.69	6.58
T-7	55.30	160	2.86	57.60
T-8	56.20	160	2.48	49.93
T-9	9.80	160	2.97	59.76
T-10	45.86	160	2.57	51.77
T-11	65.90	160	2.21	44.39
T-12	10.27	160	1.35	27.15
T-13	55.15	160	1.34	26.99
T-14	63.44	110	0.32	3.08
T-15	51.51	110	0.71	6.77
T-16	62.42	110	1.36	12.92
T-17	51.66	110	0.97	9.23
T-18	108.20	110	0.37	3.55
T-19	106.18	110	0.18	1.75
T-20	59.22	110	0.28	-2.70
T-21	75.16	110	0.66	6.25
T-22	142.22	110	0.39	-3.69
T-23	139.79	110	0.13	1.23
T-24	64.48	160	0.80	16.00
T-25	56.23	110	0.84	8.00
T-26	52.78	110	0.84	8.00
T-27	36.90	110	0.84	8.00
T-28	148.53	110	0.84	8.00

T-29	146.08	110	0.84	8.00
T-30	66.94	110	1.48	14.03
T-31	57.27	110	0.63	6.03
T-32	81.81	110	1.05	-9.97
T-33	45.82	110	1.06	-10.04
T-34	56.58	110	1.06	-10.04
T-35	55.63	110	1.90	-18.04
T-36	46.03	110	1.90	-18.04
T-37	166.43	110	0.66	6.29
T-38	146.33	110	0.84	8.00
T-39	167.03	110	0.67	-6.40
T-40	167.25	110	0.82	-7.82
T-41	167.96	110	0.73	-6.91
T-42	50.00	110	2.53	-24.09
T-43	50.00	200	2.62	-82.44

Fuente: Elaboración Propia

Se menciona que en el expediente técnico aprobado se tomó como redes principales tuberías de diámetro de 4" y 8", por lo que se realizó la propuesta con el nuevo caudal de diseño obtenido con la dotación del estudio de la presente tesis, la cual disminuyó los **diámetros a 3" y 6"** respectivamente, pero por motivos de la existencia de un grifo contra incendios, la propuesta de diámetro de 3" se mantendrá en diámetro de 4", cumpliendo así las condiciones del Reglamento Nacional de Edificaciones.

4.13. Comparación de presupuestos

Se hizo el análisis de precios unitarios en las partidas de mayor influencia con las nuevas tuberías, incluyendo partidas nuevas; la cual se detalla en la tabla N° 52 el resumen de las mismas.

En el Anexo N° 9 se puede apreciar el plano de redes de agua potable del expediente técnico aprobado.

En el Anexo N° 10 se puede apreciar el nuevo plano redes agua potable propuesto.

En el Anexo N° 11 se puede apreciar el plano de accesorios del expediente técnico aprobado.

En el Anexo Nº 12 se puede apreciar el nuevo plano de accesorios propuesto.

En el Anexo N° 13 se puede apreciar el análisis de precios unitarios.

En el Anexo N° 14 se puede apreciar los Metrados de las partidas seleccionadas.

Tabla 52.Comparación de las partidas

PARTIDAS	UNID.	P.U. (S/.)	METRADO	TOTAL (S/.)	MONTO DE REDUCCION	REDUCCION
03.02 MOVIMIENTO DE TIERRAS		· · · ·		` '		
03.02.01 EXCAVACION DE ZANJA C/MAQUINARIA PARA AGUA, ANCHO PROM = 0.65M, ALTURA PROM = 1.20 M	m	11.45	362.96	4,157.43	1,559.03	27.27%
03.02.02 EXCAVACION DE ZANJA C/MAQUINARIA PARA AGUA, ANCHO PROM = 0.80M, ALTURA PROM = 1.20 M	m	15.75	362.96	5,716.46		
03.02.03 CAMA DE APOYO E=0.10 MTS C/MAT. DE PRESTAMO, ANCHO = 0.65M	m	4.78	362.96	1,736.48	544.22	23.86%
03.02.04 CAMA DE APOYO E=0.10 MTS C/MAT. DE PRESTAMO, ANCHO = 0.80M	m	6.28	362.96	2,280.70		
03.02.05 SOBRECAMA PROTECTORA E=0.30 M C/MAT. DE PRESTAMO, ANCHO = 0.65M	m	10.56	362.96	3,832.77	941.49	19.72%
03.02.06 SOBRECAMA PROTECTORA E=0.30 M C/MAT. DE PRESTAMO, ANCHO = 0.80M	m	13.15	362.96	4,774.26		
03.02.07 RELLENO Y COMPACTADO DE ZANJA C/MAT. SELECCIONADO, ANCHO = 0.65M	m	7.57	362.96	2,748.14	746.36	21.36%
03.02.08 RELLENO Y COMPACTADO DE ZANJA C/MAT. SELECCIONADO, ANCHO = 0.80M	m	9.63	362.96	3,494.50		
03.03 SUMINISTRO E INSTALACION DE TUBERIAS						
03.03.01 SUMINISTRO E INSTAL. DE TUB. PVC/AGUA C-7.5 ISO 4422 160mm (6")	m	46.07	362.96	16,721.66	8,959.32	34.89%
03.03.02 SUMINISTRÒ É INSTAL. DE TUB. PVC/AGUA C-7.5 ISO 4422 200mm (8")	m	70.75	362.96	25,680.99		
03.03.03 PRUEBA HIDRAULICA Y DESINFECION DE TUBERIA DE AGUA POTABLE C 7.5 ISO 4422 160 mm	m	3.56	362.96	1,290.71	133.78	9.39%
(6") 03.03.04 PRUEBA HIDRAULICA Y DESINFECION DE TUBERIA DE AGUA POTABLE C 7.5 ISO 4422 200 mm (8")	m	3.92	362.96	1,424.49		

03.04 SUMINISTRO E INSTALACION DE ACCESORIOS

03.04.01 VALVULA T/COMPUERTA D=160 MM TIPO LUFLEX C/ANILLO ISO 7259	und	916.49	2	1,832.98	946.00	34.04%
03.04.02 VALVULA T/COMPUERTA D=200 MM TIPO LUFLEX C/ANILLO ISO 7259	und	1,389.49	2	2,778.98		
03.04.03 TEE HD D=160 MM X 160 MM TIPO LUFLEX ISO 2531	und	392.86	8	3,142.90	2,542.28	44.72%
03.04.04 TEE HD D=200 MM X 200 MM TIPO LUFLEX ISO 2531	und	710.65	8	5,685.19		
03.04.05 SUMINISTRO E INSTALACION DE CRUZ HD 160MM X 160MM	und	585.83	1	585.83	129.65	18.12%
03.04.06 SUMINISTRO E INSTALACION DE CRUZ HD 200MM X 200MM	und	715.48	1	715.48		
03.04.07 REDUCCION HD D=160 MM X 110 MM TIPO LUFLEX ISO 2531	und	409.40	9	3,684.59	671.75	15.42%
03.04.08 REDUCCION HD D=200 MM X 110 MM TIPO LUFLEX ISO 2531	und	483.91	9	4,356.34		

Fuente: Elaboración Propia

CAPITULO V DISCUSION

De acuerdo a las hipótesis específicas:

Como hipótesis específica 01, se tiene:

"La situación socioeconómica interviene de manera directamente proporcional a la demanda doméstica de agua potable en la ciudad de Tacna en el año 2018".

La situación socioeconómica es un criterio importante al momento de realizar la aluación del consumo de agua en la ciudad de Tacna en el año 2018, ya que influye de manera directamente proporcional referido al estilo de vida de cada persona, por ejemplo en el factor económico podemos decir que una persona al estar económicamente estable su consumo de agua podrá ser de acuerdo a lo que requieran, de manera alta, regular o baja, a la vez podrá estar relacionado al conocimiento sobre la cultura del uso del agua que aplique en su vida diaria porque cuentan con los recursos necesarios para solventar sus gastos; en comparación de alguien que no se encuentra socioeconómicamente estable que tiene que restringirse de acuerdo a sus recursos para sus gastos.

Como hipótesis específica 02, se tiene:

"La comparación de los parámetros generales de dotación de acuerdo al RNE-Norma OS.100 con los parámetros reales de los estudios de dotación en la ciudad de Tacna en el año 2018, demostraría que se está sobredimensionando al momento de diseñar redes de agua potable".

El estudio de la presente tesis se efectuó con el fin de obtener el consumo real en la ciudad de Tacna ya que este tipo de estudios es escaso. Al utilizar parámetros generales de dotación que nos indica el Reglamento Nacional de Edificaciones-Norma OS.100 se afirma que este dato no es real, ya que el consumo de agua varía de acuerdo a diferentes criterios para obtener la dotación como es el nivel socioeconómico y la densidad de personas, la finalidad de la evaluación de dotación es evitar que se siga realizando el

cálculo hidráulico con datos generales, ya que esto ocasiona que se esté sobredimensionando las tuberías al momento de diseñar redes de agua potable, por lo que esto se observó con los diferentes expedientes técnicos de cada distrito donde se obtuvo un menor caudal de diseño al utilizar la dotación hallada en la presente tesis.

Como hipótesis específica 03, se tiene:

"La inadecuada elección del parámetro de dotación en el diseño para sistemas de redes de agua potable en la ciudad de Tacna ocasionaría un incremento económico en el año 2018".

La inadecuada elección del parámetro de dotación ocasiona incremento económico al sobredimensionar en el diseño de sistemas de redes de agua potable.

Al usar una dotación sin realizar sus respectivos estudios, al consumo real de la población, ocasiona que se esté sobredimensionando las redes de agua potable, por lo que aumenta económicamente en las diferentes partidas al realizar las instalaciones del sistema de redes, lo que ocasiona una pérdida de recursos a la entidad que ejecuta los proyectos de saneamiento.

Se puede comprobar lo mencionado, con la presente tesis donde se realizó el estudio y se obtuvo consumos reales menores a lo indicado en el Reglamento Nacional de Edificaciones, por lo que se aplicó en un sistema de redes de agua potable en el distrito de Alto de la Alianza, comparando su dotación tanto general y real, las cuales son 220 L/hab/día y 173.20 L/hab/día respectivamente, por lo que la dotación obtenida por la evaluación dio como resultado un menor caudal de diseño lo que originó menores diámetros de tuberías y accesorios que cumplen con lo indicado en la Norma OS.050, con la reducción de las mismas se disminuyó el precio de las partidas relacionadas a redes.

Asimismo, se puede mencionar que al momento de calcular los análisis de precios unitarios los rendimientos y las cantidades no eran correctos, por lo que también ocasionó variaciones en el presupuesto.

Por lo mencionado, por la mala elaboración de expedientes técnicos ocurren gastos innecesarios en la ejecución de obras de agua potable en la ciudad de Tacna.

CONCLUSIONES

- 1. El estudio de dotación en toda la ciudad de Tacna en el año 2018, de acuerdo a la base comercial de la EPS TACNA S.A., se obtuvo una dotación de 160.23 litros/hab/día, en el que se consideró las conexiones domiciliarias activas de usuarios que consumen más de 100 litros diarios y las pérdidas de agua potable, con el que se comprobó que lo indicado en el Reglamento Nacional de Edificaciones se encuentra sobreestimado.
- 2. La evaluación de la dotación demuestra que varía en los diferentes sectores, debido a la falta de control en la medición del consumo de agua potable, por lo que fue necesario realizar encuestas y compararlas con los datos de la EPS TACNA S.A., de tal manera se obtuvo en el cercado de Tacna una dotación de 180.11 litros/hab./día, en el distrito de Alto de la Alianza de 173.20 litros/hab./día, en el distrito de Ciudad Nueva de 171.35 litros/hab./día, en el distrito de Pocollay de 155.84 litros/hab./día y en el distrito Gregorio Albarracín Lanchipa de 168.72 litros/hab./día en el año 2018.
- 3. La situación socioeconómica es directamente proporcional al consumo de agua, podemos mencionar que en el cercado de Tacna se encuentra con un mayor nivel socioeconómico en comparación con los otros distritos, por esto el consumo es elevado en comparación a los conos de la ciudad, ya que en este mismo la mayoría esta socioeconómicamente asentada porque tienen comúnmente ingresos fijos, además que se tiene un correcto control de lectura de medidores por lo que se logró conseguir su consumo real, pero también podemos indicar que en el distrito de Ciudad Nueva y Alto de la Alianza su consumo es menor ya que algunos no cuentan medidor o no están en funcionamiento, la cual solo se toma un consumo promedio o asignado.
- 4. Al comparar los cálculos del expediente técnico aprobado "Mejoramiento de los servicios de alcantarillado y agua potable en el pueblo Joven José de San Martin, Distrito Alto de la Alianza-Tacna-Tacna" donde se consideró como redes principales tuberías de diámetro de 4" y 8" que fueron calculados con los parámetros generales de dotación del Reglamento Nacional de Edificaciones que en este caso es 220 l/hab/día, se concluye que se encuentra sobredimensionados, ya que al diseñar con la dotación calculada en el estudio de esta tesis que es 173.2 l/hab/día en el año 2018 se redujo el diámetro de 8" a un diámetro de 6", la cual

- cumple las condiciones del Reglamento Nacional de Edificaciones –Norma OS.050, con respecto a las velocidades y presiones de las tuberías.
- 5. El efecto económico que ocasiona al usar la dotación sin realizar los estudios correspondientes, conlleva a la sobreestimación de recursos como se pudo observar con el presupuesto de las partidas de mayor influencia al reducir las tuberías, ya que se tiene aproximadamente 24.88% de reducción de precios con respecto al presupuestado de dichas partidas, esta sobreestimación ocasiona pérdidas de recursos para la entidad.

RECOMENDACIONES

- 1. Se recomienda a la Entidad Prestadora de Servicios de Saneamiento (EPS TACNA S.A.) diseñar con circuitos cerrados para tener una buena optimización y control del flujo de agua, ya que las redes de distribución se consideran como si fueran líneas de aducción y esto no permite la verificación de los sectores que consumen más cantidad de agua, e impide el correcto diseño de un sistema de redes de agua potable.
- 2. Se recomienda a la EPS TACNA S.A. mantener los macromedidores operativos al 100% en todos los sistemas, para monitorear el agua que se distribuye, ya que esto ayudaría a tener un control de los volúmenes consumidos por sectores.
- 3. Se recomienda a los proyectistas de Expedientes Técnicos utilizar rendimientos reales en los análisis de precios unitarios de acuerdo a la zona donde se va ejecutar proyectos de saneamiento de agua potable, para que esto no ocasione ampliaciones de plazo y adicionales de obra.
- Se recomienda emplear las cantidades correctas de los recursos en el análisis de precios unitarios, ya que esto provoca que no se pueda obtener el presupuesto real en obra.
- Se debe considerar para las futuras elaboraciones de expedientes técnicos, que se realice estudios para la dotación empleada en cada proyecto, considerando los diferentes lugares en el Perú.
- 6. Para hallar el caudal de diseño se debe considerar los diferentes ambientes que hay en el área de influencia del proyecto como parques, colegios, restaurantes, etc., ya que dichos establecimientos emplean una dotación mayor al de una vivienda.
- Se debe considerar para un estudio de dotación, el porcentaje de agua no facturada por causas de conexiones clandestinas, ya que este no es aplicado en la micromedición.

- 8. Se recomienda que la EPS TACNA S.A., considere a los usuarios que no tienen medidor como usuarios asignados en la base comercial, para así evitar una mala asignación tarifaria.
- 9. Se recomienda que se realice más proyectos para instalación de medidores en las viviendas de la ciudad de Tacna, con el propósito de obtener la micromedición al 100% y así obtener volúmenes reales, a la vez renovar los medidores que ya cumplieron su vida útil ya que estos podrían ocasionar que no indique el consumo verdadero de los usuarios.
- 10. Se recomienda mejorar la gestión comercial en la EPS TACNA S.A., para que sea constante las lecturas de los micromedidores de los usuarios, y así se facture con su consumo real.

REFERENCIAS BIBLIOGRAFICAS

- Agüero, R. (1997). Agua Potable para Poblaciones Rurales-Sistema de abastecimiento por gravedad sin tratamiento. Lima, Perú: SER.
- Arocha, S. (1977). Abastecimiento de agua. Caracas, Venezuela: Vega s.r.l.
- Asociación Peruana de Empresas de Investigación de Mercados (2003) [Archivo en un foro en línea]. Recuperado de http://apeim.com.pe/niveles.php
- Cachay, C. A. (1997). Estudio de factibilidad del plan óptimo de expansión a mínimo costo de alcantarillado de la ciudad de Iquitos (tesis de pregrado). Universidad Nacional de Ingeniería, Lima, Perú.
- Cárdenas, A. (18 de julio de 2018). ¿Cuánta Agua consumimos al día? [Mensaje en un blog]. Recuperado de http://ecolisima.com/cuanta-agua-consumimos-al-dia/
- Castillo, C. S. (2009). Evaluación de la dotación para el diseño de acueductos y alcantarillados para Municipios Colombianos tomando como base de búsqueda el municipio de Muzo (tesis de pregrado). Universidad de la Salle, Bogotá, Colombia.
- Cea, M. A. (1998). *Metodología cuantitativa-Estrategias y técnicas de investigación social.* Madrid, España: Síntesis S.A.
- Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente. (2004). Especificaciones técnicas para líneas de conducción e impulsión de sistemas de abastecimiento de agua rural. Lima, Perú.
- Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente. (2005). Especificaciones técnicas para la construcción de sistemas de alcantarillado. Lima, Perú.

- Cerrón, M. (2013). Estudio de consumo de agua para el proyecto de habilitación urbana los Álamos de Tacna, Distrito de Tacna, Provincia de Tacna, Departamento de Tacna. Tacna. Perú.
- Clorindavega, G, & Goñi, D. (2012). Ingreso, precio, densidad, educación y la estimación de la demanda de agua potable doméstica, en las ciudades de Huaraz e Independencia, Ancash-Peru-2011 (tesis de maestría). Universidad Nacional de Ingeniería, Lima, Perú.
- Collazos, H, & Duque, R. (1993). Residuos sólidos. Bogotá, Colombia: FUNPIRS.
- Comisión nacional de agua. (2016). *Manual de agua potable, alcantarillado y saneamiento*. D.F., México: Secretaria de medio ambiente y recursos naturales.
- División de saneamiento básico rural. (1984). Normas de diseño para proyectos de abastecimiento de agua potable para pobladores rurales. Lima, Perú.
- Entidad prestadora de servicios de saneamiento EPS TACNA S.A. (2015). Renovación y Ampliación de la Redes de Agua Potable y Alcantarillado de la J.V. Francisco de Paula Gonzales Vigil de la Ciudad de Tacna. Tacna. Perú.
- Garzón, A. J. (2014). Evaluación de patrones de Consumo y Caudales Máximos Instantáneos de Usuarios Residenciales de la Ciudad de Bogotá. Universidad Nacional de Colombia, Bogotá, Colombia.
- Instituto Costarricense de Acueductos y Alcantarillados (2010). Ventajas de la micromedición de un acueducto [Archivo en un foro en línea]. Recuperado de https://www.yumpu.com/es/document/view/14285928/ventajas-de-la-micromedicion-de-un-acueducto-aya
- Lárraga, B. P. (2016). *Diseño del sistema de agua potable* (tesis de pregrado). Pontificia Universidad Católica del Ecuador, Quito, Ecuador.
- Ministerio de Economía y Finanzas. (2011). Guía para la formulación de proyectos de inversión exitosos de saneamiento básico. Lima, Perú.

- Ministerio de Economía y Finanzas. (2015). Guía para la identificación, formulación y evaluación social de proyectos de inversión pública de servicios de saneamiento básico urbano, a nivel de perfil. Lima, Perú.
- Ministerio de vivienda, Ciudad y Territorio. (2010). Reglamento Técnico del sector de agua potable y saneamiento básico(RAS). Sistemas de acueducto. Bogotá, Colombia.
- Ministerio de Vivienda, construcción y saneamiento. (2006). Reglamento Nacional de edificaciones OS.100 Consideraciones básicas de diseño de Infraestructura Sanitaria. Lima, Perú.
- Ministerio de Vivienda, construcción y saneamiento. (2009). Reglamento Nacional de edificaciones OS.050 Redes de distribución de Agua para consumo humano. Lima, Perú.
- Ministerio de vivienda, construcción y saneamiento. (2016). Guía de Orientación para elaboración de Expedientes Técnicos de proyectos de Saneamiento. Programa Nacional de Saneamiento Urbano. Lima, Perú.
- Municipalidad Distrital Alto de la Alianza (2018). Mejoramiento de los servicios de Alcantarillado y Agua Potable en el Pueblo Joven José de San Martin, Distrito Alto de la Alianza-Tacna-Tacna. Tacna. Perú.
- Municipalidad Distrital de Ciudad Nueva (2017). *Mejoramiento De Las Redes De Agua y Desagüe De La Ampliación Ciudad Nueva, Distrito De Ciudad Nueva –Tacna-Tacna*. Tacna. Perú.
- Olivari, O, & Castro, R. (2008). Diseño del sistema de abastecimiento de agua y alcantarillado del Centro Poblado Cruz de Médano Lambayeque (tesis de pregrado). Universidad Ricardo Palma, Lima, Perú.
- Organización Mundial de la Salud. (2003). Agua, saneamiento y salud. La cantidad de agua domiciliaria, el nivel del servicio y la salud. Recuperado de https://www.who.int/water_sanitation_health/diseases/wsh0302/es/

- Paris, D. E. (2007). Manual de instalaciones de redes públicas de agua potable y alcantarillado de aguas servidas. Universidad Austral de Chile, Valdivia, Chile.
- Pingo, P. A. (2004). Factibilidad técnico económica de la fuente de abastecimiento de agua de la localidad de El Alto (tesis de pregrado). Universidad de Piura, Piura, Perú.
- Plan de saneamiento básico rural. (1962). Normas generales para proyectos de abastecimiento de agua potable. Lima, Perú.
- QuestionPro (s.f.) [Archivo en un foro en línea]. Recuperado de https://www.questionpro.com/es/que-es-spss.html
- Resolución de Consejo Directivo N°023-2013-SUNASS-CD (2013). Aprueban formula y estructura tarifaria de EPS TACNA S.A. para el próximo quinquenio regulatorio 2013-2018. Diario Oficial de la Republica de Perú: El Peruano
- Rodríguez, P. (2001). *Abastecimiento de agua*. Instituto Tecnológico de Oaxaca, Oaxaca, México: Dirección General de Institutos Tecnológicos.
- SEDAPAL (2019). ¿Cuántos litros de agua son necesarios por persona al día?.

 Recuperado de https://panamericana.pe/nacionales/259360-cuantos-litros-agua-necesarios-persona-dia
- SUNASS (2018). Proyecto de estudio tarifario. Perú
- SEDAPAL (2015) Servicio de Agua Potable y Alcantarillado de Lima. *Mejoramiento* del Sistema de Agua Potable y Alcantarillado en el AA. HH Conde De La Vega Distrito de Cercado de Lima. Lima. Perú.
- Tasaico, J. L. (2018). *Mejoramiento del sistema de agua potable en subsector 07, sector IV en la ciudad de Tacna* (tesis de pregrado). Universidad Católica de Santa María, Arequipa, Perú.
- Tisnado, J. L. (2014). Evaluación de la Dotación Per-Cápita para el Abastecimiento de Agua Potable en la Población Concentrada del Distrito de Vila-Vila-Puno (tesis para titulación). Universidad Nacional del Altiplano, Puno, Perú.

- Vera, O, & Vera, F. (2013). Evaluación del nivel socioeconómico: presentación de una escala adaptada en una población de Lambayeque. Revista del cuerpo médico Hospital Nacional Almanzor Aguinaga Asenjo, p. 43.
- Vierendel. (2009). *Abastecimiento de agua y alcantarillado.* Lima, Perú: Universidad Nacional de Ingeniería.

ANEXO 01 MATRIZ DE CONSISTENCIA

MATRIZ DE CONSISTENCIA

TEMA: "EVALUACIÓN DE CRITERIOS DE LOS PARÁMETROS DE DOTACIÓN Y SU INFLUENCIA EN EL DISEÑO PARA SISTEMAS DE REDES DE AGUA POTABLE EN LA CIUDAD DE TACNA - 2018"

INTERROGANTE DEL PROBLEMA	OBJETIVOS	HIPOTESIS	VARIABLES	INDICADORES	METODOLOGIA
PROBLEMA GENERAL	OBJETIVOS GENERAL	HIPOTESIS GENERAL	INDEPENDIENTE		TIPO DE INVESTIGACION
¿De qué manera influye la falta de evaluación de criterios de los parámetros de dotación en la ciudad de Tacna en el año 2018?	Realizar la evaluación de criterios para determinar de qué manera influye en los parámetros de dotación en la ciudad de Tacna en el año 2018.	La falta de evaluación de criterios de los parámetros influye negativamente al determinar la dotación en la ciudad de Tacna en el año 2018.	Criterios de los parámetros de dotación de agua potable.	-Consumo de agua -Nivel socioeconómico -Ubicación de las viviendas -Número de habitantes por vivienda -Tarifa de acuerdo a los que cuentan con agua potableSectorización por la empresa prestadora de servicios de agua potable -Cantidad de agua suministrada por la empresa prestadora de servicios de agua suministrada por la empresa prestadora de servicios de agua potable	El tipo de investigación es exploratorio- explicativo. Investigación exploratoria ya que la presente investigación parte de un tema de investigación general que en este caso es la dotación, que es comúnmente usada en los cálculos para el diseño de redes de agua potable, la cual no ha sido profundizado por el motivo de que no se ha realizado los estudios respectivos para sustentarlo; además la obtención para esta información se realizara de forma directa referido a las encuestas, e indirecta en base a los datos históricos de EPS TACNA S.A.

					Investigación explicativa ya que en este caso se usará la variable dependiente que es dotación que estará en función de las variables independientes que serán los diferentes factores para obtener dicho consumo.
PROBLEMAS ESPECIFICOS	OBJETIVOS ESPECIFICOS	HIPOTESIS ESPECIFICAS	DEPENDIENTE		POBLACION Y/O MUESTRA DE ESTUDIO
¿En qué medida la situación socioeconómica interviene en la demanda doméstica de agua potable en la ciudad de Tacna en el año 2018?	medida la situación socioeconómica interviene en la demanda doméstica de agua potable en la	La situación socioeconómica interviene de manera directamente proporcional a la demanda doméstica de agua potable en la ciudad de Tacna en el año 2018.	Estudios para obtener la dotación real de agua potable en la ciudad de Tacna.	- Encuestas	El trabajo de investigación se realizará en la ciudad de Tacna, específicamente en los distritos de Alto de la Alianza, Ciudad Nueva, Pocollay, Gregorio Albarracín, Tacna, que para obtener los datos de

¿Qué resultado demuestra la comparación entre los parámetros generales de dotación de acuerdo al RNE-Norma OS.100 y los parámetros reales de los estudios de dotación en la ciudad de Tacna en el año 2018?	de dotación de acuerdo al RNE- Norma OS.100 con los parámetros reales de los estudios de dotación en la ciudad	La comparación de los parámetros generales de dotación de acuerdo al RNE-Norma OS.100 con los parámetros reales de los estudios de dotación en la ciudad de Tacna en el año 2018, demostraría que se está sobredimensionando al momento de diseñar redes de agua potable.	- Base de datos de EPS TACNA S.A.	consumo de agua se hará el muestreo con encuestas directas la cual se tomará 40 viviendas representativas por distrito, teniendo en total un universo de 200 viviendas en la ciudad de Tacna; la misma que al inicio del estudio no se sabrá si dichos domicilios cuentan con medidor.
¿Qué efecto económico ocasiona la inadecuada elección del parámetro de dotación en el diseño para sistemas de redes de agua potable en la ciudad de Tacna en el año 2018?	económico ocasionaría la inadecuada elección del parámetro de dotación en el diseño para sistemas de	La inadecuada elección del parámetro de dotación en el diseño para sistemas de redes de agua potable en la ciudad de Tacna ocasionaría un incremento económico en el año 2018.		

ANEXO 02 RESULTADOS DE LAS ENCUESTAS

ANEXO 03 CONSUMO MENSUAL DE ACUERDO A LA EPS TACNA S.A.

RESUMEN DE CONSUMOS DE AGUA POTABLE POR DISTRITO

ANEXO 05 MEMORIA DE CÁLCULO HIDRÁULICO

PLANO DE UBICACIÓN DEL PROYECTO DE ALTO DE LA ALIANZA

ANEXO 07 PLANO DE ÁREA DE INFLUENCIA

ANEXO 08 PLANO TOPOGRÁFICO

PLANO DE REDES DE AGUA POTABLE DE EXPEDIENTE TÉCNICO APROBADO

PLANO DE NUEVAS REDES DE AGUA POTABLE PROPUESTO

PLANO DE ACCESORIOS DEL EXPEDIENTE TÉCNICO APROBADO

PLANO PROPUESTO DE UBICACIÓN DE NUEVOS ACCESORIOS

ANEXO 13 ANÁLISIS DE PRECIOS UNITARIOS

ANEXO 14 METRADOS DE PARTIDAS SELECCIONADAS