UNIVERSIDAD PRIVADA DE TACNA

ESCUELA DE POSTGRADO

MAESTRÍA EN INGENIERÍA CIVIL CON MENCIÓN EN ESTRUCTURAS

ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO SÍSMICO DE DISIPADORES HISTERÉTICOS SLB, TADAS Y DISIPADORES SÍSMICOS DE FLUIDO-VISCOSO APLICADOS EN LA INFRAESTRUCTURA DE LA UNIVERSIDAD TECNOLÓGICA DEL PERÚ DE TACNA - 2024

TESIS

Presentada por:

Br. Hernán Gian Pierre Orocollo Cauna ORCID: 0009-0005-5313-8788

Asesor:

PhD. Rick Milton Delgadillo Ayala ORCID: 0000-0002-9763-1938

Para obtener el grado académico de:

MAESTRO EN INGENIERÍA CIVIL CON MENCIÓN EN ESTRUCTURAS

TACNA - PERÚ 2024

UNIVERSIDAD PRIVADA DE TACNA

ESCUELA DE POSTGRADO MAESTRÍA EN INGENIERÍA CIVIL CON MENCIÓN EN ESTRUCTURAS

Tesis

ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO SÍSMICO DE DISIPADORES HISTERÉTICOS SLB, TADAS Y DISIPADORES SÍSMICOS DE FLUIDO-VISCOSO APLICADOS EN LA INFRAESTRUCTURA DE LA UNIVERSIDAD TECNOLÓGICA DEL PERÚ DE TACNA – 2024

Presentado por:

Bach. Hernán Gian Pierre Orocollo Cauna
Tesis sustentada y aprobada el 26 de octubre de 2024; ante el siguiente
jurado examinador:

PRESIDENTE: Mtra. Dina Marlene Cotrado Flores

SECRETARIO: Dr. Dennys Geovanni Calderón Paniagua

VOCAL: Dr. Genner Alvarito Villarreal Castro

ASESOR: PhD. Rick Milton Delgadillo Ayala

DECLARACIÓN DE ORIGINALIDAD

Yo, Hernán Gian Pierre Orocollo Cauna, en calidad de egresado de la Maestría en Ingeniería Civil con mención en Estructuras de la Escuela de Postgrado de la Universidad Privada de Tacna, identificado con DNI 70359147.

Soy Autor de la tesis titulada: ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO SÍSMICO DE DISIPADORES HISTERÉTICOS SLB, TADAS Y DISIPADORES SÍSMICOS DE FLUIDO-VISCOSO APLICADOS EN LA INFRAESTRUCTURA DE LA UNIVERSIDAD TECNOLÓGICA DEL PERÚ DE TACNA – 2024, con asesor: PhD. Rick Milton Delgadillo Ayala.

DECLARO BAJO JURAMENTO

Ser el único autor del texto entregado para obtener el grado académico de Maestro en Ingeniería Civil con Mención en Estructuras, y que tal texto no ha sido entregado ni total ni parcialmente para obtención de un grado académico de ninguna otra universidad o instituto, ni ha sido publicado anteriormente para cualquier otro fin.

Así mismo, declaro no haber transgredido ninguna norma universitaria con respecto al plagio ni a las leyes establecidas que protegen la propiedad intelectual.

Declaro, que después de la revisión de la tesis con el software Turnitin se declara 17% de similitud, además que el archivo entregado en formato PDF corresponde exactamente al texto digital que presento junto al mismo.

Por último, declaro que para la recopilación de datos se ha solicitado la autorización respectiva a la empresa u organización, evidenciándome que la información presentada es real y soy conocedor de las sanciones penales en caso de infringir las leyes del plagio y de falsa declaración, y que firmo la presente con pleno uso de mis facultades y asumiendo todas las responsabilidades de ella derivada.

iv

Por lo expuesto, mediante la presente asumo frente a LA UNIVERSIDAD cualquier

responsabilidad que pudiera derivarse por la autoría, originalidad y veracidad del contenido

de la tesis, así como por los derechos sobre la obra o invención presentada. En consecuencia,

me hago responsable frente a LA UNIVERSIDAD y a terceros, de cualquier daño que

pudiera ocasionar, por el cumplimiento de lo declarado o que pudiera encontrar como casusa

del trabajo presentado, asumiendo todas las cargas pecuniarias que pudieran derivarse de

ello en favor de terceros con motivo de acciones, reclamaciones o conflictos derivados del

incumplimiento de lo declarado a las que encontrasen causa en el contenido de la tesis, libro

o invento.

De identificarse fraude, piratería, falsificación o que el trabajo de investigación haya sido

publicado anteriormente; asumo las consecuencias y sanciones que de mi acción se deriven,

sometiéndome a la normatividad vigente de la Universidad Privada de Tacna.

Tacna, 26 de octubre de 2024

Hernán Gian Pierre Orocollo Cauna

DNI: 70359147

DEDICATORIA

Dedico esta tesis a Dios, cuya guía y fortaleza han sido el pilar fundamental en cada desafío superado. A mis padres, cuyo amor incondicional y constante apoyo me han inspirado a perseverar y alcanzar este logro. A mis seres queridos, que con su cariño y aliento han sido mi refugio y fuente de energía. Esta obra es el fruto de su presencia constante y de la fe que todos han depositado en mí.

AGRADECIMIENTO

Agradezco profundamente a Dios por hacer posible este logro, que representa un hito sumamente importante en mi vida. A mi familia y a mis seres queridos, que me acompañaron con su apoyo incondicional a lo largo y desafiante camino, les extiendo mi más sincero agradecimiento. Su presencia y aliento han sido fundamentales para alcanzar esta meta.

TABLA DE CONTENIDO

Pág.
DECLARACIÓN DE ORIGINALIDADiii
DEDICATORIAv
AGRADECIMIENTOvi
ÍNDICE DE TABLASxi
ÍNDICE DE FIGURASxvii
RESUMENxxiii
ABSTRACTxxiv
INTRODUCCIÓNxxv
CAPÍTULO I: EL PROBLEMA1
1.1 PLANTEAMIENTO DEL PROBLEMA
1.2 FORMULACIÓN DEL PROBLEMA
1.2.1 Interrogante principal
1.2.2 Interrogantes secundarias
1.3 JUSTIFICACIÓN DE LA INVESTIGACIÓN
1.4 OBJETIVOS DE LA INVESTIGACIÓN4
1.4.1 Objetivo general4
1.4.2 Objetivos específicos
CAPÍTULO II: MARCO TEÓRICO6
2.1 ANTECEDENTES DE LA INVESTIGACIÓN
2.1.1 A nivel internacional6
2.1.2 A nivel nacional
2.2 BASES TEÓRICAS
2.2.1 Disipadores histeréticos SLB
2.2.2 Disipador TADAS

2.2.3	Disipador de Fluido-Viscoso	. 25
2.2.4	Análisis dinámico modal espectral	. 28
2.2.5	Análisis dinámico no lineal tiempo - historia	. 29
2.2.6	Disipadores de energía viscoelásticos	. 30
2.3 D	DEFINICIÓN DE CONCEPTOS	. 31
2.3.1	Sismicidad	. 31
2.3.2	Rótulas plásticas	.31
2.3.3	Ductilidad	. 32
2.3.4	Análisis no lineal	. 32
2.3.5	Curva de capacidad	. 32
2.3.6	Desempeño sísmico	. 32
2.3.7	Niveles de desempeño	. 33
2.3.8	Límites de reforzamiento	. 33
2.3.9	Espectro de diseño	. 33
2.3.10	Derivas	. 33
2.3.11	Desplazamientos	. 34
2.3.12	Aceleración en el centro de masa	. 34
2.3.13	Energía disipada	. 34
2.3.14	Cortante basal	. 34
2.3.15	Modos de vibración	. 34
2.3.16	Configuración geométrica	. 35
2.3.17	Dimensión del disipador	. 35
2.3.18	Cantidad de dispositivos disipadores	. 35
CAPÍTUL	O III: MARCO METODOLÓGICO	.36
3.1 H	IIPÓTESIS	. 36
3.1.1	Hinótesis general	. 36

3.1.2	Hipótesis específicas	36
3.2	OPERACIONALIZACIÓN DE VARIABLES	37
3.2.1	Identificación de la variable independiente	37
3.2.2	Identificación de la variable dependiente	37
3.3	ΓΙΡΟ DE INVESTIGACIÓN	39
3.4	NIVEL DE INVESTIGACIÓN	39
3.5	DISEÑO DE INVESTIGACIÓN	39
3.6	ÁMBITO Y TIEMPO SOCIAL DE INVESTIGACIÓN	40
3.7	POBLACIÓN Y OBJETO DE ESTUDIO	40
3.7.1	Unidad de estudio	40
3.7.2	Población	40
3.7.3	Muestra	40
3.8	PROCEDIMIENTO, TÉCNICAS E INSTRUMENTOS	41
3.8.1	Procedimiento	41
3.8.2	Técnicas	41
3.8.3	Instrumentos	41
CAPÍTUI	LO IV: RESULTADOS	43
4.1	DESCRIPCIÓN DEL TRABAJO DE CAMPO	43
4.2	DISEÑO DE LA PRESENTACIÓN DE LOS RESULTADOS	46
4.2.1	Modelamiento estructural y estado actual	46
4.2.2	Implementación de sistemas de protección sísmica	74
4.3	RESULTADOS	154
4.3.1	Periodos	154
4.3.2	Desplazamientos promedio	155
4.3.3	Derivas	156
4.3.4	Fuerza cortante	157

4.3.5	Aceleraciones	7
4.3.6	Balance energético	3
4.3.7	Costo)
4.4 P	PRUEBA ESTADÍSTICA160)
4.4.1	Periodos)
4.4.2	Desplazamientos promedio)
4.4.3	Derivas	l
4.4.4	Fuerza cortante	1
4.4.5	Aceleraciones	2
4.4.6	Balance energético	2
4.5	COMPROBACIÓN DE HIPÓTESIS163	3
4.6 I	DISCUSIÓN DE RESULTADOS165	5
CONCLU	SIONES 168	3
RECOME	NDACIONES)
I. REF	ERENCIAS BIBLIOGRÁFICAS172	1
MATRIZ	DE CONSISTENCIA175	5
ANEXOS		7

ÍNDICE DE TABLAS

	Pag.
Tabla 1 Operacionalización de variables	38
Tabla 2 Zonificación E.030 (Art.10)	47
Tabla 3 Condiciones geotécnicas, E.030 (Art.12)	48
Tabla 4 Resumen de parámetros sísmicos	52
Tabla 5 Modos de vibración	53
Tabla 6 Peso de la estructura	54
Tabla 7 Desplazamientos y derivas en dirección en X	55
Tabla 8 Desplazamientos y derivas en dirección en Y	57
Tabla 9 Cortante estático y dinámico del edificio	58
Tabla 10 Desplazamientos absolutos y relativos X	59
Tabla 11 Derivas máximas ΔX	68
Tabla 12 Derivas máximas ΔY	69
Tabla 13 Relación del análisis dinámico no lineal tiempo – historia X & el R=1	70
Tabla 14 Relación del análisis dinámico no lineal tiempo – historia Y & el R=1	71
Tabla 15 Desplazamientos máximos en X de la estructura	71
Tabla 16 Aceleraciones máximas de la estructura	72
Tabla 17 Fuerza cortante Vx de la estructura	73
Tabla 18 Primera iteración en la selección de los disipadores SLB4 del nivel 10	76
Tabla 19 Primera iteración en la selección de los disipadores SLB4 del nivel 9	77
Tabla 20 Primera iteración en la selección de los disipadores SLB4 del nivel 8	77
Tabla 21 Primera iteración en la selección de los disipadores SLB4 del nivel 7	77
Tabla 22 Primera iteración en la selección de los disipadores SLB4 del nivel 6	78
Tabla 23 Primera iteración en la selección de los disipadores SLB4 del nivel 5	78

Tabla 24 Primera iteración en la selección de los disipadores SLB4 del nivel 4	78
Tabla 25 Primera iteración en la selección de los disipadores SLB4 del nivel 3	79
Tabla 26 Primera iteración en la selección de los disipadores SLB4 del nivel 2	79
Tabla 27 Sexta iteración en la selección de los disipadores SLB4 del nivel 10	80
Tabla 28 Sexta iteración en la selección de los disipadores SLB4 del nivel 9	80
Tabla 29 Sexta iteración en la selección de los disipadores SLB4 del nivel 8	80
Tabla 30 Sexta iteración en la selección de los disipadores SLB4 del nivel 7	81
Tabla 31 Sexta iteración en la selección de los disipadores SLB4 del nivel 6	81
Tabla 32 Sexta iteración en la selección de los disipadores SLB4 del nivel 5	81
Tabla 33 Sexta iteración en la selección de los disipadores SLB4 del nivel 4	82
Tabla 34 Sexta iteración en la selección de los disipadores SLB4 del nivel 3	82
Tabla 35 Sexta iteración en la selección de los disipadores SLB4 del nivel 2	82
Tabla 36 Modos de vibración sin y con disipadores Shear Link Bozzo	83
Tabla 37 Desplazamientos máximos en X de la estructura	83
Tabla 38 Desplazamientos máximos en X de la estructura con disipadores SLB	84
Tabla 39 Resumen de desplazamientos promedio en X de la estructura sin y con disipado	ores
SLB	85
Tabla 40 Derivas máximas ΔX de la estructura sin disipadores	86
Tabla 41 Derivas máximas ΔX de la estructura con disipadores Shear Link Bozzo	86
Tabla 42 Resumen de derivas ΔX promedio de la estructura sin y con disipadores SLB	87
Tabla 43 Fuerza cortante Vx de la estructura	88
Tabla 44 Fuerza cortante Vx de la estructura con disipadores SLB	89
Tabla 45 Resumen de cortantes Vx promedio de la estructura sin y con disipador SLB	89
Tabla 46 Aceleraciones máximas de la estructura	90
Tabla 47 Aceleraciones máximas de la estructura con disipadores SLB	91

Tabla 48 Resumen de aceleraciones promedio en X de la estructura sin y con disipado	
Tabla 49 Resultados de fuerza cortante y desplazamiento máximo	
Tabla 50 Distribución de energía disipada por la estructura y por los disipadores Shear Bozzo	
Tabla 51 Costo de implementación de disipadores SLB	101
Tabla 52 Propiedades mecánicas del TADAS	103
Tabla 53 Propuesta de valores	103
Tabla 54 Distribución de esfuerzos cortantes	104
Tabla 55 Dimensiones del disipador TADAS	104
Tabla 56 Coeficiente de reducción por amortiguamiento	104
Tabla 57 Selección del brazo metálico	105
Tabla 58 Modos de vibración sin y con disipadores TADAS	105
Tabla 59 Desplazamientos máximos en X de la estructura	106
Tabla 60 Desplazamientos máximos en X de la estructura con disipadores TADAS	106
Tabla 61 Resumen de desplazamientos promedio en X de la estructura sin y con disipa	
Tabla 62 Derivas máximas ΔX de la estructura	108
Tabla 63 Derivas máximas ΔX de la estructura con disipadores TADAS	109
Tabla 64 Resumen de derivas máximas ΔX promedio de la estructura sin y con disipa	adores
TADAS	110
Tabla 65 Fuerza cortante Vx de la estructura	111
Tabla 66 Fuerza cortante Vx de la estructura con disipadores TADAS	111
Tabla 67 Resumen de cortantes Vx promedio de la estructura sin y con disipador TA	
Tabla 68 Aceleraciones máximas de la estructura	
Tabla 69 Aceleraciones máximas de la estructura con disipadores TADAS	113

Tabla 70 Resumen de aceleraciones (m/sec2) promedio en X de la estructura sin y con
TADAS114
Tabla 71 Resultados de fuerza cortante y desplazamiento máximo
Tabla 72 Distribución de energía disipada por la estructura y por los disipadores TADAS
Tabla 73 Costo de implementación de disipadores TADAS
Tabla 74 Propiedades del material
Tabla 75 Derivas del caso vulnerable en X
Tabla 76 Derivas del caso vulnerable en Y
Tabla 77 Dimensiones del perfil round Hss 20,00 x 0,50
Tabla 78 Rigidez lateral Kx y Ky
Tabla 79 Valores de λ respecto α
Tabla 80 Notación y parámetros clave para el análisis de estructuras con disipadores viscosos
Tabla 81 Calculo del coeficiente de cada disipador
Tabla 82 Propiedades del disipador
Tabla 83 Cálculos generales para el amortiguamiento no lineal del disipador
Tabla 84 Modos de vibración sin y con disipadores Fluido Viscoso
Tabla 85 Desplazamientos máximos en X de la estructura
Tabla 86 Desplazamientos máximos en X de la estructura con disipadores Fluido Viscoso
Tabla 87 Resumen de desplazamientos promedio en X sin y con disipadores Fluido Viscoso
Tabla 88 Derivas máximas ΔX de la estructura
Tabla 89 Derivas máximas ΔX de la estructura con disipadores Fluido Viscoso
Tabla 90 Resumen de derivas ΔX promedio de la estructura sin y con disipadores Fluido
Viscoso

Tabla 91 Fuerza cortante Vx de la estructura	136
Tabla 92 Fuerza cortante Vx de la estructura con disipadores Fluido Viscoso	137
Tabla 93 Resumen de cortantes Vx promedio de la estructura sin y con disipadores	s Fluido
Viscoso	137
Tabla 94 Aceleraciones máximas de la estructura	138
Tabla 95 Aceleraciones máximas de la estructura con disipadores Fluido Viscoso	139
Tabla 96 Resumen de aceleraciones (m/sec2) promedio en X sin y con disipadores Viscoso	
Tabla 97 Resultados de fuerza cortante y desplazamiento máximo	140
Tabla 98 Distribución de energía disipada por la estructura y por los disipadores de Viscoso	
Tabla 99 Selección del disipador de acuerdo a su fuerza (KIP) del nivel 10	149
Tabla 100 Selección del disipador de acuerdo a su fuerza (KIP) del nivel 9	150
Tabla 101 Selección del disipador de acuerdo a su fuerza (KIP) del nivel 8	150
Tabla 102 Selección del disipador de acuerdo a su fuerza (KIP) del nivel 7	150
Tabla 103 Selección del disipador de acuerdo a su fuerza (KIP) del nivel 6	151
Tabla 104 Selección del disipador de acuerdo a su fuerza (KIP) del nivel 5	151
Tabla 105 Selección del disipador de acuerdo a su fuerza (KIP) del nivel 4	151
Tabla 106 Selección del disipador de acuerdo a su fuerza (KIP) del nivel 3	152
Tabla 107 Selección del disipador de acuerdo a su fuerza (KIP) del nivel 2	152
Tabla 108 Selección del disipador de acuerdo a su fuerza (KIP) del nivel 1	152
Tabla 109 Costo de implementación del disipador de Fluido Viscoso	153
Tabla 110 Comparación de modos de vibración	154
Tabla 111 Comparación de desplazamientos dx promedio	155
Tabla 112 Comparación de derivas máximas ΔX promedio	156
Tabla 113 Comparación de cortantes Vx (Tonf) promedio	157

Tabla 114 Comparación de aceleraciones (m/sec2) en X promedio	157
Tabla 115 Comparación del balance energético	158
Tabla 116 Comparación de costo del disipador	159
Tabla 117 Comparación de modos de vibración	160
Tabla 118 Comparación de desplazamientos dx promedio	160
Tabla 119 Comparación de derivas máximas ΔX promedio	161
Tabla 120 Comparación de cortantes Vx (Tonf) promedio	161
Tabla 121 Comparación de aceleraciones (m/sec) en X promedio	162
Tabla 122 Comparación del balance energético	162

ÍNDICE DE FIGURAS

Pag
Figura 1 Impacto del terremoto ocurrido en Tacna
Figura 2 Consecuencias del terremoto en Tacna
Figura 3 Disipador tipo SLB (a) Comportamiento histeréticos, (b) Configuración geométrica
SLB
Figura 4 Disipadores Shear Link Bozzo (SLB)
Figura 5 Disipador SLB de tercera generación y cuarta generación
Figura 6 Parámetros de diseño para los disipadores SLB (Tercera generación)
Figura 7 Parámetros de diseño para los disipadores SLB (Cuarta generación)
Figura 8 Comportamiento rígido - dúctil
Figura 9 Sistema disipador – muro desacoplado
Figura 10 Modelo del muro desacoplado y disipador SLB
Figura 11 Sistema disipador – arriostres metálicos
Figura 12 Modelo de diagonales metálicas y disipador SLB
Figura 13 Diagrama de flujo de métodos de selección
Figura 14 Modos de vibración
Figura 15 Diagrama de flujo de método de iteración directa
Figura 16 Deformación máxima – iteración directa
Figura 17 Diagrama de flujo de método de iteración inversa
Figura 18 Deformación máxima – iteración inversa
Figura 19 Disipador TADAS
Figura 20 Diagrama de comportamiento del disipador TADAS
Figura 21 Modelo matemático dependiente del desplazamiento
Figura 22 Relación de amortiguamiento de los disipadores histeréticos

Figura 23 Disipador de Fluido Viscoso	26
Figura 24 Curva histerética	26
Figura 25 Comparación del comportamiento de disipadores de Fluido Viscoso linea	les y no
lineales en función de la velocidad	27
Figura 26 Ubicación de la Universidad Tecnología del Perú – distrito de Tacna	44
Figura 27 Plano de la superficie	45
Figura 28 Modelo estructural de la Universidad Tecnológica del Perú	50
Figura 29 Vista en elevación de la estructura.	51
Figura 30 Distribución de cargas vivas y muertas en el modelado ETABS	52
Figura 31 Periodos fundamentales del edificio	54
Figura 32 Espectro de diseño.	55
Figura 33 Desplazamiento en X	56
Figura 34 Deriva E.030 dirección en X	56
Figura 35 Desplazamiento en Y	57
Figura 36 Deriva E.030 dirección en Y	58
Figura 37 Espectro normativo E.030 R=1	60
Figura 38 Registro Ica 2007 este a oeste	61
Figura 39 Registro Ica 2007 norte a sur	61
Figura 40 Registro Lima 1966 este a oeste	62
Figura 41 Registro Lima 1966 norte a sur	62
Figura 42 Registro Lima 1974 este a oeste	63
Figura 43 Registro Lima 1974 norte a sur	63
Figura 44 Registro escalado Ica 2007 este a oeste	64
Figura 45 Registro escalado Ica 2007 norte a sur	65
Figura 46 Registro escalado Lima 1966 este a oeste	65
Figura 47 Registro escalado Lima 1966 norte a sur	6 6

Figura 48 Registro escalado Lima 1974 este a oeste	66
Figura 49 Registro escalado Lima 1974 norte a sur	67
Figura 50 Espectro compatibilizado de pseudoaceleraciones	67
Figura 51 Derivas máximas ΔX con un límite según la E0.30	69
Figura 52 Derivas máximas ΔY con un límite según la E0.30	70
Figura 53 Desplazamientos máximos en X	72
Figura 54 Aceleraciones (m/sec2) en X de la estructura	73
Figura 55 Vista isométrica del edificio incorporando disipadores de Shear Link Bozzo.	75
Figura 56 Vista en elevación de los pórticos en el eje B y E con disipadores Shear Bozzo	
Figura 57 Comparación de desplazamientos máximos en X sin y con disipadores SLB	84
Figura 58 Comparación de desplazamientos promedio en X sin y con disipadores SLB.	85
Figura 59 Comparación de derivas máximas ΔX	87
Figura 60 Comparación de derivas máximas ΔX promedio	88
Figura 61 Comparación de fuerzas cortantes Vx promedio	90
Figura 62 Comparación de aceleraciones (m/sec2) en X promedio	92
Figura 63 Fuerza cortante máximas con los disipadores Shear Link Bozzo	93
Figura 64 Desplazamientos máximos con los disipadores Shear Link Bozzo	93
Figura 65 Curva histerética con disipador Shear Link Bozzo – Ica 2007 caso 1	94
Figura 66 Curva histerética con disipador Shear Link Bozzo – Ica 2007 caso 2	94
Figura 67 Curva histerética con disipador Shear Link Bozzo – Lima 1966 caso 1	95
Figura 68 Curva histerética con disipador Shear Link Bozzo – Lima 1966 caso 2	95
Figura 69 Curva histerética con disipador Shear Link Bozzo – Lima 1974 caso 1	96
Figura 70 Curva histerética con disipador Shear Link Bozzo – Lima 1974 caso 2	96
Figura 71 Energía disipada por la estructura y por el disipador Shear Link Bozzo	97

Figura 72 Porcentaje de energía disipada por la estructura y por el disipador Shear Link Bozzo
Figura 73 Balance energético de la estructura bajo el registro sísmico de Ica 2007 - caso 1
Figura 74 Balance energético de la estructura bajo el registro sísmico de Ica 2007 - caso 2
Figura 75 Balance energético de la estructura bajo el registro sísmico de Lima 66 - caso 1
Figura 76 Balance energético de la estructura bajo el registro sísmico de Lima 66 - caso 2
Figura 77 Balance energético de la estructura bajo el registro sísmico de Lima 74 - caso 1
Figura 78 Balance energético de la estructura bajo el registro sísmico de Lima 74 - caso 2
Figura 79 Vista isométrica de la estructura con la incorporación de disipadores TADAS102
Figura 80 Vista en elevación de los pórticos en el eje B y E con disipadores TADAS 103
Figura 81 Comparación de desplazamientos máximos en X sin y con disipadores TADAS
Figura 82 Comparación de desplazamientos promedio en X sin y con disipadores TADAS
Figura 83 Comparación de derivas máximas ΔX109
Figura 84 Comparación de derivas máximas ΔX promedio110
Figura 85 Comparación de fuerzas cortantes Vx promedio
Figura 86 Comparación de aceleraciones (m/sec2) en X promedio
Figura 87 Fuerza cortante máximas con los disipadores TADAS115
Figura 88 Desplazamientos máximos con los disipadores TADAS116
Figura 89 Curva histerética con disipador TADAS – Ica 2007 caso 1116
Figura 90 Curva histerética con disipador TADAS – Ica 2007 caso 2

Figura 91 Curva histerética con disipador TADAS – Lima 1966 caso 1
Figura 92 Curva histerética con disipador TADAS – Lima 1966 caso 2
Figura 93 Curva histerética con disipador TADAS – Lima 1974 caso 1
Figura 94 Curva histerética con disipador TADAS – Lima 1974 caso 2
Figura 95 Energía disipada por la estructura y por el disipador TADAS
Figura 96 Porcentaje de energía disipada por la estructura y por el disipador TADAS 120
Figura 97 Balance energético de la estructura bajo el registro sísmico de Ica 2007 - caso 1
Figura 98 Balance energético de la estructura bajo el registro sísmico de Ica 2007 - caso 2
Figura 99 Balance energético de la estructura bajo el registro sísmico de Lima 66 - caso 1
Figura 100 Balance energético de la estructura bajo el registro sísmico de Lima 66 - caso 2
Figura 101 Balance energético de la estructura bajo el registro sísmico de Lima 74 - caso 1
Figura 102 Balance energético de la estructura bajo el registro sísmico de Lima 74 - caso 2
Figura 103 Vista isométrica del edificio incorporando disipadores de Fluido-Viscoso 125
Figura 104 Vista en elevación de los pórticos en el eje B y E con disipadores Fluido Viscoso
Figura 105 Determinación del ángulo y desplazamiento relativo del soporte de disipador de energía
Figura 106 Desplazamientos máximos en X
Figura 107 Comparación de desplazamientos dx(m) promedio
Figura 108 Comparación de derivas máximas ΔX
Figura 109 Comparación de derivas máximas Δx promedio

Figura 110 Comparación de fuerzas cortantes Vx promedio	38
Figura 111 Comparación de aceleraciones (m/sec2) en X promedio	40
Figura 112 Fuerza cortante máximas con los disipadores – Fluido Viscoso 1	41
Figura 113 Desplazamientos máximos con los disipadores – Fluido Viscoso 1	41
Figura 114 Curva histerética con disipador de Fluido Viscoso – Ica 2007 caso 1 1	42
Figura 115 Curva histerética con disipador de Fluido Viscoso – Ica 2007 caso 2 1	42
Figura 116 Curva histerética con disipador de Fluido Viscoso – Lima 1966 caso 1 1	43
Figura 117 Curva histerética con disipador de Fluido Viscoso – Lima 1966 caso 2 1	43
Figura 118 Curva histerética con disipador de Fluido Viscoso – Lima 1974 caso 1 1	44
Figura 119 Curva histerética con disipador de Fluido Viscoso – Lima 1974 caso 2 1	44
Figura 120 Energía disipada por la estructura y por los disipadores de Fluido Viscoso 1	45
Figura 121 Porcentaje de energía disipada sin disipadores y con disipadores de Flui Viscoso	
Figura 122 Balance energético de la estructura bajo el registro sísmico de Ica 2007 - caso	o 1
	46
Figura 123 Balance energético de la estructura bajo el registro sísmico de Ica 2007 - caso 1	
Figura 124 Balance energético de la estructura bajo el registro sísmico de Lima 66 - caso	
Figura 125 Balance energético de la estructura bajo el registro sísmico de Lima 66 - caso	
Figura 126 Balance energético de la estructura bajo el registro sísmico de Lima 74 - caso	o 1
Figura 127 Balance energético de la estructura bajo el registro sísmico de Lima 74 - caso	o 2
Figura 128 Comparación de modos de vibración1	
Figura 129 Comparación de desplazamientos dx promedio	

	٠	٠	٠
XX	1	1	1

Figura 130 Comparación de derivas máximas Δx promedio	. 156
Figura 131 Comparación de aceleraciones x promedio	. 158

RESUMEN

El presente estudio de investigación tuvo como objetivo general realizar un análisis comparativo del comportamiento sísmico de disipadores histeréticos SLB, TADAS, y de fluido viscoso en la infraestructura de la Universidad Tecnológica del Perú en Tacna. La investigación, de tipo básico y enfoque explicativo, utilizó un diseño no experimental. Se llevaron a cabo análisis dinámicos modal espectral y no lineal tiempo-historia con el software ETABS, evaluando el impacto de los disipadores en la reducción de desplazamientos laterales, derivas máximas, fuerzas cortantes, aceleraciones entre pisos y equilibrio energético de la estructura. Los resultados mostraron que los disipadores de fluido viscoso fueron los más efectivos, reduciendo los desplazamientos en un 48% y las derivas en un 58%. Además, redujeron las aceleraciones en un 22%, sin aumentar significativamente las fuerzas cortantes, mejorando la resiliencia sísmica sin comprometer la estabilidad estructural. Los disipadores SLB y TADAS redujeron los períodos de vibración en un 26,90% y 30,01%, respectivamente, pero también incrementaron las fuerzas cortantes en un 31%. El análisis de balance energético reveló que los disipadores histeréticos disipan el 92% de la energía a través de la estructura, mientras que los de fluido viscoso absorben el 38,73%, de la energía sísmica. Aunque los disipadores de fluido viscoso son más costosos, sus beneficios en términos de reducción de daños y mejora de la seguridad estructural justifican su implementación. Los disipadores SLB y TADAS, más económicos, también mejoran la resiliencia sísmica, siendo opciones viables para proyectos con limitaciones presupuestarias.

Palabras clave: Disipadores de energía, resiliencia sísmica, análisis dinámico Tiempo-Historia.

ABSTRACT

The present research study aimed to conduct a comparative analysis of the seismic behavior of SLB hysteretic dampers, TADAS dampers, and viscous fluid dampers in the infrastructure of the Universidad Tecnológica del Perú in Tacna. The study, which was basic in nature with an explanatory approach, used a non-experimental design. Spectral modal dynamic and nonlinear time-history analyses were carried out using ETABS software to evaluate the impact of the dampers on the reduction of lateral displacements, maximum drifts, shear forces, interstory accelerations, and the energy balance of the structure. The results showed that viscous fluid dampers were the most effective, reducing displacements by 48% and drifts by 58%. Additionally, they reduced accelerations by 22%, without significantly increasing shear forces, thereby improving seismic resilience without compromising structural stability. SLB and TADAS dampers reduced vibration periods by 26,90% and 30,01%, respectively, but also increased shear forces by 31%. The energy balance analysis revealed that hysteretic dampers dissipate 92% of the energy through the structure, while viscous fluid dampers absorb 38,73% of the seismic energy. Although viscous fluid dampers are more expensive, their benefits in terms of damage reduction and improved structural safety justify their implementation. SLB and TADAS dampers, being more economical, also improve seismic resilience, making them viable options for projects with budget constraints.

Keywords: Energy dampers, seismic resilience, Time-History dynamic analysis.

INTRODUCCIÓN

El Perú se encuentra en una zona de alta actividad sísmica, lo que ha llevado a la comunidad de ingenieros y científicos a desarrollar e implementar diversas técnicas para mejorar la resiliencia sísmica de las infraestructuras. La historia sísmica del país, caracterizada por terremotos de gran magnitud, ha resaltado la necesidad de aplicar métodos avanzados en el diseño y reforzamiento de edificaciones, especialmente en estructuras de importancia crítica como las universidades.

En este contexto, la presente tesis se enfoca en evaluar el comportamiento sísmico de la infraestructura de la Universidad Tecnológica del Perú en Tacna, utilizando disipadores de energía como medida de mitigación de daños. Se han seleccionado tres tipos de disipadores: los disipadores histeréticos SLB y TADAS, y los disipadores de Fluido viscoso, para realizar un análisis comparativo detallado de su efectividad en la reducción de desplazamientos, derivas, fuerzas cortantes y aceleraciones en la estructura.

El análisis se llevó a cabo mediante el uso de herramientas avanzadas como el software ETABS, aplicando tanto análisis dinámico modal espectral como análisis no lineal tiempo-historia. Estos métodos permiten obtener una comprensión profunda de cómo cada tipo de disipador influye en la respuesta sísmica de la edificación, y cómo su implementación puede cumplir con los requerimientos de la norma E030 – 2024.

El enunciado del problema, la metodología empleada y los resultados obtenidos se detallan a lo largo de esta tesis. En el capítulo I se presenta el marco teórico, el planteamiento del problema, los objetivos de la investigación y las hipótesis formuladas. El capítulo II aborda los antecedentes de la investigación, así como la fundamentación teórica relacionada con los disipadores de energía y el análisis sísmico. En el capítulo III se describe la metodología utilizada, incluyendo la selección del software, los modelos analizados, y los criterios de evaluación. Finalmente, en el capítulo IV se presentan los resultados obtenidos del análisis comparativo y finalmente se discuten las conclusiones y recomendaciones, así como las implicancias de los hallazgos para futuros estudios

CAPÍTULO I: EL PROBLEMA

1.1 PLANTEAMIENTO DEL PROBLEMA

El Perú se encuentra en una de las zonas sísmicas más activas del mundo, lo que implica un alto riesgo para las edificaciones, especialmente en regiones vulnerables como Tacna. Los eventos sísmicos históricos, como el terremoto de 2001, han dejado al descubierto la fragilidad estructural de muchas edificaciones, especialmente aquellas que no han sido diseñadas o reforzadas con criterios sismorresistentes modernos. En este contexto, surge la necesidad de implementar tecnologías avanzadas de protección sísmica que reduzcan el riesgo de colapso y mejoren la resiliencia estructural.

La infraestructura educativa de la Universidad Tecnológica del Perú en Tacna, como otras edificaciones de importancia crítica, requiere soluciones innovadoras para mejorar su respuesta ante sismos. La incorporación de disipadores de energía, tales como los disipadores histeréticos SLB, TADAS, y los disipadores de Fluido viscoso, se presenta como una estrategia prometedora para reducir los desplazamientos, derivas, fuerzas cortantes y aceleraciones durante eventos sísmicos, proporcionando mayor seguridad y estabilidad estructural.

El problema central radica en la falta de estudios comparativos que analicen el comportamiento sísmico de diferentes tipos de disipadores de energía aplicados en edificaciones educativas en la región de Tacna. En particular, se desconoce cuál de estos dispositivos (SLB, TADAS o Fluido viscoso) ofrece un mejor desempeño en términos de reducción de daños y optimización del costo-beneficio en estas estructuras específicas. La ausencia de esta información crítica dificulta la toma de decisiones fundamentadas en la selección e implementación de tecnologías de mitigación sísmica adecuadas para infraestructuras similares.

Este estudio busca llenar este vacío de conocimiento mediante un análisis comparativo detallado, utilizando análisis dinámicos modal espectral y no lineal tiempohistoria, que permita identificar las ventajas y limitaciones de cada tipo de disipador en la infraestructura de la Universidad Tecnológica del Perú en Tacna. La solución a este problema contribuirá a mejorar la protección de edificaciones estratégicas en regiones altamente sísmicas del Perú, promoviendo la adopción de tecnologías de disipación de energía en el sector de la construcción.

Figura 1 *Impacto del terremoto ocurrido en Tacna*

Nota: La figura muestra los graves daños estructurales causados por un terremoto en Tacna, destacando la vulnerabilidad de las construcciones ante sismos. Este colapso evidencia la necesidad de mejorar los diseños estructurales y utilizar tecnologías avanzadas de disipación de energía, como los disipadores histeréticos SLB, TADAS y de fluido viscoso, para aumentar la resiliencia sísmica y proteger mejor a las comunidades. Fuente: Correo (2001).

Figura 2

Consecuencias del terremoto en Tacna

Nota: La figura muestra los devastadores daños estructurales causados por el terremoto en Tacna en 2001. Esta destrucción subraya la vulnerabilidad de las construcciones y el significativo impacto económico, incluyendo costos de reparación, pérdidas comerciales y desempleo. Implementar tecnologías avanzadas de disipación de energía es esencial para mejorar la resistencia sísmica y proteger a la comunidad. Fuente: Correo (2001).

1.2 FORMULACIÓN DEL PROBLEMA

1.2.1 Interrogante principal

¿Cuál será el análisis comparativo del comportamiento sísmico de disipadores histeréticos SLB, TADAS y disipadores sísmicos de Fluido-Viscoso aplicados en la infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024?

1.2.2 Interrogantes secundarias

- ¿Qué resultado se obtendrá al evaluar la situación actual y realizar un análisis dinámico modal espectral mediante el software ETABS para justificar la incorporación de los disipadores de energía SLB, TADAS y Fluido-Viscoso en la infraestructura de la Universidad Tecnológica del Perú de Tacna 2024?
- ¿Cuáles serán las ubicaciones estratégicas de la incorporación de los disipadores de energía SLB, TADAS y Fluido-Viscoso en los pórticos de la infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024?
- ¿Cuál será el análisis dinámico no lineal Tiempo—Historia con el objetivo de determinar los desplazamientos laterales entre piso, derivas máximas, fuerzas cortantes, aceleraciones máximas entre piso, y llevar a cabo un balance energético implementando disipadores de energía SLB, TADAS y Fluido-Viscoso de la infraestructura de la Universidad Tecnológica del Perú de Tacna 2024?
- ¿Cuál será el análisis costo-beneficio para evaluar la viabilidad económica de implementar disipadores de energía SLB, TADAS y Fluido-Viscoso en la infraestructura de la Universidad Tecnológica del Perú de Tacna 2024?

1.3 JUSTIFICACIÓN DE LA INVESTIGACIÓN

Tacna, ubicada en una región con una historia sísmica significativa, ha sido testigo de eventos notables, especialmente el terremoto de magnitud 6.9° en 2001, que causó importantes daños. La mayoría de estas pérdidas se debieron a prácticas de autoconstrucción y proyectos realizados sin el apoyo de profesionales especializados. Este hecho subraya la necesidad urgente de abordar la vulnerabilidad sísmica en esta dinámica localidad.

El histórico sismo de 2001 no solo revela la necesidad imperiosa de adoptar medidas preventivas, sino también la importancia de la innovación y la planificación estratégica. Este desafío se convierte en una oportunidad para transformar las dificultades en soluciones proactivas, marcando el inicio de un enfoque más resiliente y avanzado en la gestión de

riesgos sísmicos. Este suceso no solo nos insta a reflexionar sobre lecciones pasadas, sino que también nos impulsa a mirar hacia adelante, hacia un futuro donde la preparación y la ingeniería avanzada sean pilares fundamentales en la construcción de una Tacna más segura y robusta frente a la actividad sísmica.

En este contexto dinámico, la transformación y el reforzamiento de la infraestructura se presentan como imperativos ineludibles. La implementación estratégica de ingeniería sismorresistente y la integración de disipadores de energía innovadores, como los SLB, TADAS y de Fluido-Viscoso, emergen como las claves para aumentar la resiliencia sísmica en el distrito de Tacna.

Estas soluciones avanzadas no solo actúan como un antídoto contra posibles amenazas sísmicas, sino que también representan el cimiento de una nueva era en la arquitectura y la ingeniería estructural. Se trata de un compromiso con la seguridad, la innovación y la vanguardia tecnológica. Al adoptar estas prácticas pioneras, Tacna no solo se prepara para enfrentar con mayor solidez los desafíos sísmicos, sino que también establece una plataforma sólida para el desarrollo de una comunidad más resiliente. En este camino hacia la protección y la viabilidad a largo plazo, Tacna se posiciona como un faro de innovación y progreso, construyendo un entorno que no solo cumple con los más altos estándares, sino que también inspira a otras regiones a seguir su ejemplo.

1.4 OBJETIVOS DE LA INVESTIGACIÓN

1.4.1 Objetivo general

Realizar un análisis comparativo del comportamiento sísmico de disipadores histeréticos SLB, TADAS y disipadores sísmicos de Fluido-Viscoso aplicados en la infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024.

1.4.2 Objetivos específicos

- Evaluar la situación actual y realizar un análisis dinámico modal espectral mediante el software ETABS para justificar la incorporación de los disipadores de energía SLB, TADAS y Fluido-Viscoso en la infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024.
- Identificar y definir estratégicamente las ubicaciones de la incorporación de los disipadores de energía SLB, TADAS y Fluido-Viscoso en los pórticos de la infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024.

- Realizar el análisis dinámico no lineal Tiempo-Historia con el objetivo de determinar los desplazamientos laterales entre piso, derivas máximas, fuerzas cortantes, aceleraciones máximas entre piso, y llevar a cabo un balance energético implementando disipadores de energía SLB, TADAS y Fluido-Viscoso de la infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024.
- Realizar un análisis costo-beneficio para evaluar la viabilidad económica de implementar disipadores de energía SLB, TADAS y Fluido-Viscoso en la infraestructura de la Universidad Tecnológica del Perú de Tacna 2024.

CAPÍTULO II: MARCO TEÓRICO

2.1 ANTECEDENTES DE LA INVESTIGACIÓN

2.1.1 A nivel internacional

a) Artículos

Chen et al. (2023) en su artículo titulado "Optimum arrangement of TADAS dampers for seismic drift control of buildings using accelerated iterative methods" cuyo objetivo general fue proponer y evaluar métodos iterativos acelerados para la disposición óptima de disipadores TADAS en edificios con el fin de controlar la deriva sísmica. El tipo y diseño fue analítico, numérico y la muestra fueron los edificios de gran altura y baja altura utilizados como ejemplos de aplicación. Entre sus resultados obtuvo que los métodos iterativos acelerados modificados demostraron ser los más eficientes en términos de costo, logrando una reducción del desplazamiento lateral de hasta un 40%. Llegó a concluir que los métodos iterativos acelerados modificados (MAIM-I y MAIM-II) combinan estrategias set-by-set y one-by-one de manera efectiva, proporcionando una solución óptima y económica para la disposición de disipadores TADAS en edificios altos.

Baquero et al. (2022), en su artículo titulado "Comparative study on the effectiveness of fluid viscous dampers and base isolation: an approach toward enhancing seismic performance of composite structures" cuyo objetivo general fue evaluar la efectividad de los disipadores de fluido viscoso y la base aislada para mejorar el rendimiento sísmico de estructuras compuestas. El tipo y diseño fue experimental y la muestra fueron las estructuras compuestas con disipadores de fluido viscoso y sistemas de base aislada. Entre sus resultados obtuvo que los disipadores de fluido viscoso redujeron el desplazamiento en un 32%, mientras que los sistemas de base aislada lograron una reducción del 29%. Llegó a concluir que los disipadores de fluido viscoso son ligeramente más efectivos que los sistemas de base aislada para mejorar el rendimiento sísmico, pero ambos proporcionan beneficios significativos.

Gorji et al. (2022), en su artículo titulado "Numerical study of metallic dampers' effect on seismic performance of concrete frames" cuyo objetivo general fue evaluar el comportamiento cíclico y la eficiencia de los disipadores metálicos, incluyendo los SLB (Shear Link Bozzo), en el rendimiento sísmico de marcos de concreto reforzado. El tipo y diseño fue estudio numérico y la muestra fueron los porticos de concreto reforzado

equipados con disipadores SLB. Entre sus resultados obtuvo que los disipadores SLB lograron una reducción del 30% en el desplazamiento lateral y una mejora del 25% en la capacidad de disipación de energía. Llegó a concluir que los disipadores SLB son efectivos en mejorar la rigidez y la capacidad de disipación de energía de los marcos de concreto reforzado, proporcionando una mayor resistencia y durabilidad frente a eventos sísmicos.

b) Tesis

Farhad et al. (2024), en su tesis titulado "Effect of u-shaped metallic dampers on the seismic performance of steel structures based on endurance-time analysis" cuyo objetivo general fue evaluar el impacto de los amortiguadores metálicos en forma de U en el rendimiento sísmico de estructuras de acero utilizando el método de análisis de tiempo de resistencia. El tipo y diseño fue experimental y análitico y la muestra fueron las estructuras de acero de 5 y 10 pisos con y sin amortiguadores metálicos en forma de U. Entre sus resultados obtuvo que los amortiguadores metálicos en forma de U redujeron el desplazamiento inter-historia en un 30% y las fuerzas cortantes de historia en un 35%. Los análisis mostraron que los dispositivos mejoraron la ductilidad y la capacidad de disipación de energía de las estructuras, manteniendo la estabilidad estructural durante cargas sísmicas severas. Además, se observaron mejoras significativas en la resistencia a la fatiga de los componentes estructurales, prolongando su vida útil. Llegó a concluir que los amortiguadores metálicos en forma de U son efectivos para mejorar la resistencia sísmica de las estructuras de acero, proporcionando una solución duradera y eficiente para la mitigación de daños durante terremotos.

Patel et al. (2022), en su tesis titulado "Dynamic response of adjacent structures connected by friction damper" cuyo objetivo general fue investigar la respuesta dinámica de estructuras adyacentes conectadas por amortiguadores de fricción. El tipo y diseño fue experimental, analítico y la muestra fueron las estructuras adyacentes conectadas por amortiguadores de fricción. Entre sus resultados obtuvo que los amortiguadores de fricción lograron reducir en un 30% las respuestas sísmicas de las estructuras conectadas. Los análisis detallados mostraron una mejora en la distribución de las fuerzas sísmicas entre las estructuras, reduciendo significativamente los picos de aceleración y las tensiones inducidas en los componentes estructurales. Además, se observó una mayor estabilidad y menor riesgo de colapso estructural en las conexiones de las estructuras durante eventos sísmicos severos. Llegó a concluir que los amortiguadores de fricción son efectivos en la mitigación de

vibraciones sísmicas, proporcionando una mayor seguridad estructural y mejorando la distribución de las cargas sísmicas entre estructuras conectadas, lo que reduce el riesgo de daños severos y colapsos durante terremotos.

Kiral (2022), en su tesis titulada "Novel displacement dependent Viscous Damper for semiactive control of the seismic response of multistorey buildings" cuyo objetivo general fue investigar el desarrollo e implementación de un nuevo tipo de amortiguador viscoso dependiente del desplazamiento para el control semiactivo de la respuesta sísmica en edificios de varias plantas. El tipo y diseño fue experimental, analítico y la muestra fueron los Edificios de varias plantas equipados con amortiguadores viscosos dependientes del desplazamiento. Entre sus resultados obtuvo que los amortiguadores viscosos dependientes del desplazamiento lograron una reducción del desplazamiento lateral en un 40%, además de una mejora del 35% en la capacidad de disipación de energía. Los ensayos demostraron que estos dispositivos son capaces de ajustar su rigidez en tiempo real, respondiendo de manera efectiva a diferentes niveles de excitación sísmica, lo que permite una mayor flexibilidad y adaptabilidad en comparación con los sistemas pasivos tradicionales. Llegó a concluir los amortiguadores viscosos dependientes del desplazamiento pueden mejorar notablemente la seguridad y la integridad estructural de los edificios en zonas sísmicas, proporcionando un control semiactivo efectivo y adaptativo que reduce significativamente los daños durante eventos sísmicos.

2.1.2 A nivel nacional

a) Artículos

Bozzo et al. (2024), en su artículo titulado "Disipadores para protección sísmica SLB y perspectivas de futuro" cuyo objetivo general fue evaluar la eficiencia de los disipadores Shear Link Bozzo (SLB) en la protección sísmica de edificaciones. El tipo y diseño fue experimental, analítico y la muestra fueron edificios equipados con disipadores SLB en Perú. Entre sus resultados obtuvo que los disipadores SLB lograron una reducción del 35% en desplazamientos laterales y del 30% en las fuerzas sísmicas. Además, mejoraron la capacidad de disipación de energía en un 40%, reduciendo significativamente el riesgo de daños estructurales severos. La implementación de estos disipadores también permitió una reducción del 20% en los costos de reparación post-sismo. Llegó a concluir que los disipadores SLB son altamente efectivos para mejorar la resistencia sísmica de las

edificaciones, proporcionando una solución eficiente para reducir el riesgo de daños estructurales y aumentar la resiliencia de las edificaciones frente a eventos sísmicos.

Mendoza (2023), en su artículo titulado "Implementación y comparación de disipadores de fluido viscoso en el comportamiento sísmico de una edificación de once niveles ubicado en el distrito de Surquillo" cuyo objetivo general fue evaluar la implementación y comparación de disipadores de fluido viscoso en una edificación para mejorar su resistencia sísmica. El tipo y diseño fue experimental, analítico y la muestra fueron fue una edificación de once niveles en Surquillo. Entre sus resultados obtuvo que los disipadores de fluido viscoso lograron una reducción del 30% en desplazamientos laterales y del 25% en las fuerzas sísmicas. También se observó una disminución del 20% en las aceleraciones de piso, mejorando la protección de los contenidos internos del edificio. La implementación de estos disipadores permitió una reducción del 15% en los costos de reparación post-sismo debido a la menor demanda en los elementos estructurales. Llegó a concluir la implementación de disipadores de fluido viscoso es efectiva para mejorar la resistencia sísmica de las edificaciones en Perú, proporcionando mayor protección y estabilidad estructural, así como una reducción en los costos de mantenimiento y reparación post-sismo.

Segura (2021), en su artículo titulado "Uso de aisladores y disipadores para mejorar el comportamiento sismorresistente de edificios altos en el Perú. Revisión sistemática 2010-2020" cuyo objetivo general fue revisar el uso de aisladores y disipadores para mejorar el comportamiento sismorresistente de edificios altos en Perú. El tipo y diseño fue revisión sistemática y la muestra fueron los edificios altos en Perú. Entre sus resultados obtuvo que los aisladores y disipadores mejoraron el desempeño sísmico en un 40% en términos de reducción de desplazamientos laterales y en un 35% en la disminución de fuerzas sísmicas. Además, se documentó una reducción del 25% en el riesgo de daño estructural severo y una mejora del 30% en la resiliencia de las estructuras frente a réplicas y sismos secundarios. Llegó a concluir el uso combinado de aisladores y disipadores es altamente efectivo para mejorar la seguridad sísmica de edificios altos en Perú, reduciendo significativamente el riesgo de daños estructurales y aumentando la capacidad de recuperación de las edificaciones.

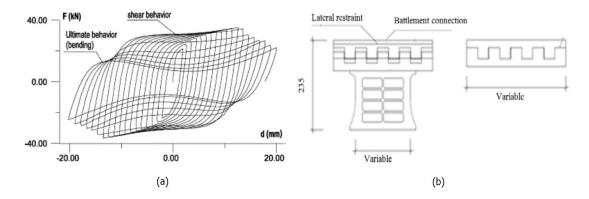
2.2 BASES TEÓRICAS

2.2.1 Disipadores histeréticos SLB

Kim et al. (2022), los disipadores histeréticos tipo Shear Link Bozzo (SLB) son dispositivos especializados diseñados para mejorar la disipación de energía en estructuras durante eventos sísmicos. Funcionan mediante deformación plástica bajo cargas cíclicas, absorbiendo energía a través de un ciclo de histéresis. Esta absorción de energía reduce las fuerzas sísmicas transmitidas a la estructura principal, minimizando daños significativos y mejorando la estabilidad estructural. Los SLB están compuestos por elementos de acero que se deforman en forma controlada, convirtiendo la energía sísmica en energía térmica que es disipada.

a) Características principales

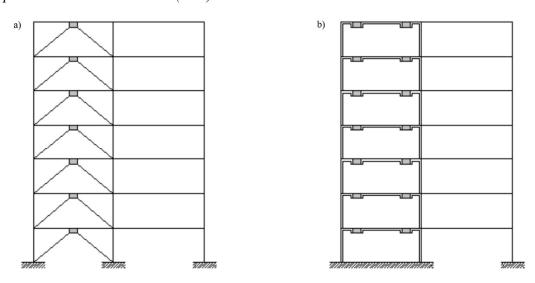
- Deformación plástica: Los SLB están diseñados para experimentar deformaciones plásticas bajo cargas cíclicas, lo que permite una alta capacidad de disipación de energía.
- Curva histerética: La repetición de ciclos de carga y descarga produce una curva de histéresis que representa la energía disipada por el dispositivo.
- Reemplazabilidad: Después de un evento sísmico, los SLB pueden ser reemplazados fácilmente, facilitando la reparación y mantenimiento de la estructura.
- Reducción de fuerzas sísmicas: Al absorber y disipar energía, estos disipadores reducen las fuerzas transmitidas a la estructura, disminuyendo las derivas de entrepiso y eliminando la irregularidad torsional.
- Mejora de la resiliencia: Contribuyen significativamente a la resistencia y estabilidad sísmica de edificios altos y otras estructuras críticas.


b) Eficacia y beneficios

- Mejora en la resistencia sísmica: Los SLB han demostrado ser eficaces en la mejora de la resistencia sísmica y estabilidad de las estructuras.
- Reducción de derivas de entrepiso: Estudios de Kim et al. (2022), han mostrado que los SLB pueden reducir las derivas de entrepiso en un 40% y mejorar la eficiencia energética en un 30%.
- Reemplazabilidad: Después de un evento sísmico, los SLB pueden ser reemplazados fácilmente, facilitando la reparación y mantenimiento de la estructura.

• Aplicaciones prácticas: Son particularmente útiles en edificios altos donde las demandas sísmicas son mayores y la protección de la integridad estructural es crucial.

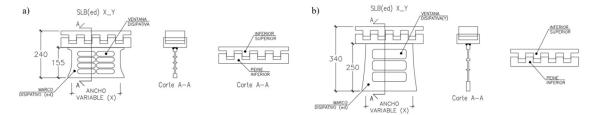
Figura 3


Disipador tipo SLB (a) Comportamiento histeréticos, (b) Configuración geométrica SLB

Nota: La imagen muestra dos diagramas relacionados con los disipadores histeréticos tipo Shear Link Bozzo (SLB): a) una curva de histéresis que ilustra la capacidad del disipador para absorber y disipar energía mediante doble deformación bajo cargas cíclicas, reduciendo las fuerzas sísmicas transmitidas a la estructura principal y mejorando su resistencia; y b) un esquema detallado del diseño del disipador, indicando componentes críticos y dimensiones variables que permiten su adaptación a diferentes necesidades estructurales. Estos elementos son fundamentales para optimizar la resiliencia sísmica de edificaciones, minimizando los daños estructurales y protegiendo a los ocupantes. Fuente: Kim et al. (2022).

Figura 4

Disipadores Shear Link Bozzo (SLB)

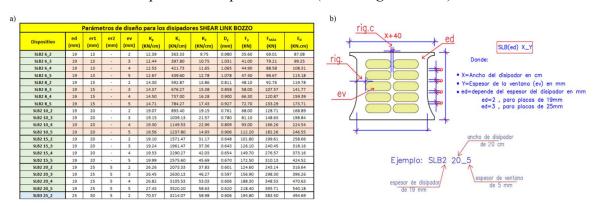


Nota: a) Muestra una aplicación clásica de disipadores con diagonales metálicas, que transfieren cargas axiales para mejorar el comportamiento sísmico. b) Se presenta la aplicación propuesta con muros desacoplados de concreto de 15 cm y conexiones con disipadores Shear Link Bozzo (SLB). A diferencia del sistema clásico, los disipadores SLB no necesitan estar alineados verticalmente, ya que no transfieren carga axial, ofreciendo mayor flexibilidad en el diseño estructural. Fuente: Bozzo et al. (2016)

2.2.1.1 Disipador Shear link actual

En la actualidad, se encuentran disponibles disipadores SLB de tercera y cuarta generación. Estos disipadores incluyen una clasificación de acuerdo al material con el que están fabricados: los de tercera y cuarta generación pueden estar elaborados con acero A36 (SLB) o con acero de grado 50 (ESLB), según las especificaciones del proyecto.

Figura 5Disipador SLB de tercera generación y cuarta generación

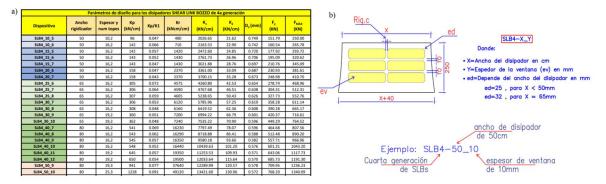

Nota: La figura a) muestra la geometría del disipador SLB de tercera generación, con una altura de 240 mm y un diseño con ventana disipativa para optimizar la disipación de energía, mientras que la figura b) presenta el disipador de cuarta generación, con una altura de 340 mm y una configuración más robusta que mejora la capacidad de deformación y el desempeño en la disipación de energía, según el corte A-A en ambos casos. Fuente: Postensa (2021).

2.2.1.2 Disipadores SLB de tercera generación

La lista de disipadores SLB de tercera generación incluye un total de 56 dispositivos, según lo señalado por el Ing. Marcos Pantoja en 2017.

Figura 6

Parámetros de diseño para los disipadores SLB (Tercera generación)

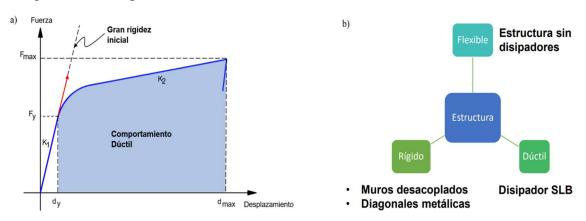

Nota: La figura a) muestra una tabla con los parámetros de diseño de los disipadores SLB de tercera generación, incluyendo dimensiones, rigidez y energía disipada. La figura b) muestra la nomenclatura utilizada, que define el ancho, el espesor de la ventana disipativa y el espesor de las placas, como en el ejemplo SLB2 20_5. Fuente: Postensa (2021).

2.2.1.3 Disipadores SLB de cuarta generación

La lista de disipadores SLB de cuarta generación incluye un total de 36 dispositivos, según lo señalado por el Ing. Guillermo Bozzo en 2020.

Figura 7

Parámetros de diseño para los disipadores SLB (Cuarta generación)

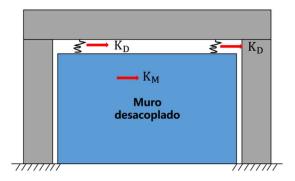

Nota: La figura a) presenta los parámetros de diseño de los disipadores SLB de cuarta generación, como el ancho, espesor, rigidez y fuerza de fluencia, según Postensa (2020). La figura b) muestra la nomenclatura utilizada para identificar estos dispositivos, donde se indica el ancho del disipador, el espesor de la ventana y el tipo de placa, como en el ejemplo SLB4-50_10. Fuente: Postensa (2021).

2.2.1.4 Concepto rígido - dúctil

Los SLB se distinguen por su alta rigidez inicial y su notable capacidad de deformación, pudiendo alcanzar más de 25 veces la deformación correspondiente a su punto de fluencia, lo que los convierte en dispositivos altamente dúctiles.

Figura 8

Comportamiento rígido - dúctil



Nota: La figura a) muestra cómo los disipadores SLB combinan alta rigidez inicial con gran capacidad de deformación, siendo altamente dúctiles. La figura b) compara estructuras sin disipadores, más flexibles, con estructuras con disipadores SLB, que son más dúctiles y eficientes en la disipación de energía. Fuente: Postensa (2021).

2.2.1.5 Modelo matemático – muro desacoplado

Para asegurar un desempeño óptimo de los disipadores, es necesario que los elementos de soporte tengan mayor rigidez que los dispositivos instalados. A continuación, se presenta la rigidez lateral del sistema cuando los disipadores se instalan sobre muros desacoplados.

Figura 9Sistema disipador – muro desacoplado

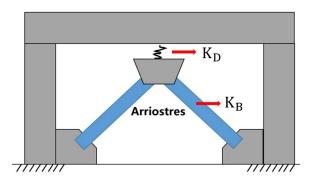
Nota: Sistema disipador – muro desacoplado. Fuente: Postensa (2021).

Figura 10 *Modelo del muro desacoplado y disipador SLB*

$$\begin{array}{c|c} K_{M} & & & \\ K_{D} & & & \\ K_{D} & & & \\ \hline & K_{D} & & \\ \hline \end{array}$$

Nota: La figura muestra el modelo de rigidez de muro desacoplado y disipador SLB. Fuente: Postensa (2021). La rigidez del sistema será:

$$\frac{1}{K_{M-D}} = \frac{1}{K_M} + \frac{1}{2K_D} = \frac{2K_D + K_M}{2K_M * K_D}
\frac{1}{K_{M-D}} = \frac{2K_M * K_D}{2K_M + K_M} = \frac{2K_D}{\left(1 + \frac{2K_D}{K_M}\right)}$$
(2.1)


Donde:

$$K_{M} = \frac{Et_{M}}{4\left(\frac{H_{M}}{L_{M}}\right)^{3} + 3\left(\frac{H_{M}}{L_{M}}\right)} \tag{2.3}$$

2.2.1.6 Modelo matemático – arriostres metálicos

Para asegurar el funcionamiento adecuado de los disipadores, es necesario que los elementos de soporte tengan una rigidez superior a la de los dispositivos instalados. A continuación, se presenta la rigidez lateral del sistema cuando los disipadores se instalan sobre diagonales metálicas.

Figura 11
Sistema disipador – arriostres metálicos

Nota: Sistema disipador – arriostres metálicos.

Fuente: Postensa (2021).

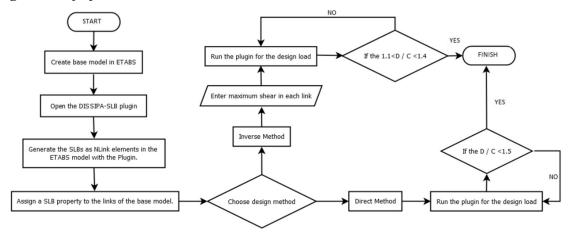
Figura 12 *Modelo de diagonales metálicas y disipador SLB*

Nota: La figura muestra el modelo de rigidez de diagonales metálicas y disipador SLB. Fuente: Postensa (2021).

La rigidez del sistema será:

$$K_{M-D} = K_D \left(\frac{1}{1 + \frac{K_B}{KD^{-1}}} \right) \tag{2.4}$$

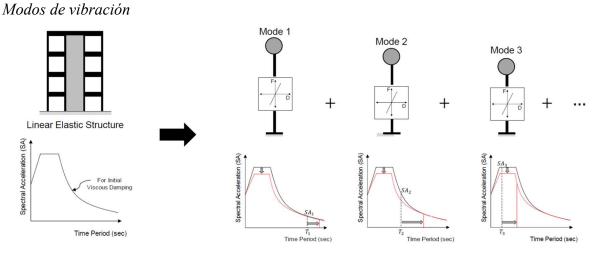
$$K_{B-D} = K_B \left(\frac{1}{1 + \frac{K_B}{K_D}} \right) \tag{2.5}$$


Se recomienda:

$$2 \le \frac{K_B}{K_D} \le 3 \tag{2.6}$$

2.2.1.7 Análisis modal espectral

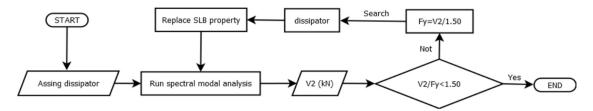
Existen dos métodos de prediseño para seleccionar dispositivos SLB, ambos basados en el análisis modal espectral. Estos métodos sustituyen los procedimientos que utilizan el análisis no lineal de tiempo-historia, permitiendo así un considerable ahorro de tiempo en el cálculo de la estructura con disipadores según Muñoz (2021).


Figura 13Diagrama de flujo de métodos de selección

Nota: La figura muestra un diagrama de flujo para la selección de disipadores SLB, basado en el análisis modal espectral. Se describen dos enfoques de prediseño, el método directo y el método inverso, que optimizan el proceso de selección, aunque es necesario validar el prediseño mediante un análisis no lineal. Fuente: Bozzo (2024).

En el análisis modal, la respuesta global de la estructura se obtiene combinando los distintos modos de vibración, siendo el primer modo (o modo fundamental) el que generalmente tiene mayor influencia en el comportamiento total de la estructura.

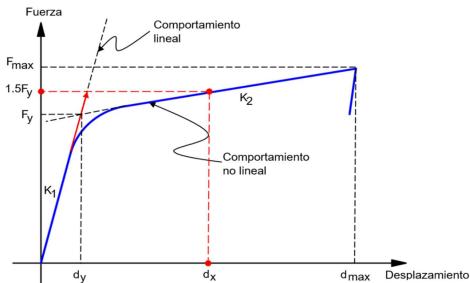
Figura 14



Nota: La imagen muestra que la respuesta de la estructura se obtiene combinando los modos de vibración, destacando el modo fundamental como el de mayor influencia. Fuente: Bozzo (2024).

2.2.1.8 Método de iteración directa

El método directo se basa en un proceso iterativo de selección de dispositivos a través de análisis lineales (modal espectral). Durante este proceso, los dispositivos asignados inicialmente se van ajustando progresivamente en función de la fuerza cortante obtenida en cada iteración, hasta que la relación entre dicha fuerza cortante y la capacidad de fluencia del dispositivo (D/C) alcance un valor de 1.5 según Bozzo (2024).

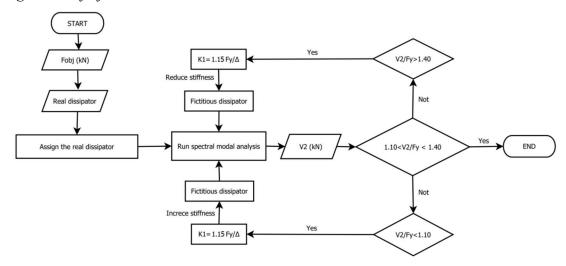

Figura 15Diagrama de flujo de método de iteración directa

Nota: La figura describe el proceso de iteración para ajustar los disipadores SLB mediante análisis modal espectral. El ciclo continúa hasta que la relación V2/Fy cumple con el valor deseado de 1.5, ajustando las propiedades del disipador en cada iteración. Fuente: Bozzo (2024).

El método directo confirma que la fuerza que actúa sobre el disipador sea, como mínimo, 1.5 veces mayor que su fuerza de fluencia. Esto garantiza que los dispositivos mantengan el equilibrio de fuerzas necesario para el correcto diseño de la estructura.

Figura 16Deformación máxima – iteración directa

Nota: La figura describe el comportamiento del disipador SLB, que inicialmente es lineal hasta su fuerza de fluencia Fy. Luego su comportamiento no lineal hasta alcanzar 1.5 veces Fy y finalmente llega a su deformación máxima. Fuente: Bozzo (2024).


La fórmula muestra que la Fuerza de análisis, producto de la rigidez K1 y el desplazamiento dx, debe superar 1.5 veces la fuerza de fluencia Fy del disipador para un diseño adecuado.

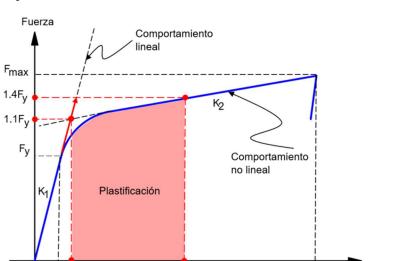
$$F_{análisis} = K_1 * d_x > 1.5 F y_{dispositivo} \tag{2.7}$$

2.2.1.9 Método de iteración inversa

El método de iteración inversa, también conocido como el método de "fuerza fija", difiere del método directo al enfocarse en limitar la fuerza cortante durante la selección de los disipadores. A diferencia del enfoque directo, este procedimiento no requiere un análisis sísmico para elegir los dispositivos, ya que se basa en una fuerza cortante predeterminada establecida por el diseñador como objetivo según Bozzo (2024).

Figura 17Diagrama de flujo de método de iteración inversa

Nota: El diagrama muestra el proceso de selección de disipadores SLB mediante el método de iteración inversa. Se ajusta la rigidez del disipador a través de un análisis modal espectral, buscando que la relación V2/Fy esté entre 1.10 y 1.40, garantizando así un diseño adecuado. Fuente: Bozzo (2024).


El método inverso se basa en ajustar iterativamente la rigidez del dispositivo (utilizando una rigidez ficticia) hasta que la fuerza obtenida en el análisis se sitúe entre 1.1 y 1.4 veces la fuerza de fluencia (Fy). Para lograrlo, se utilizan las deformaciones calculadas en el análisis, que deben ser coherentes con el cortante de diseño.

La rigidez ficticia se determina:

$$K_{ficticia} = \frac{1.15Fy_{dispositivo}}{d_{x}} \tag{2.8}$$

Desplazamiento

dmax

Figura 18Deformación máxima – iteración inversa

Nota: La figura muestra el comportamiento de los disipadores SLB, que pasa de una fase lineal con rigidez K1 a una fase de plasticidad entre 1.1 y 1.4 veces Fy, con una rigidez reducida K2. El disipador alcanza su deformación máxima en dmax. Fuente: Bozzo (2024).

En los métodos iterativos de diseño de disipadores SLB, la relación D/C (fuerza cortante sobre fuerza de fluencia) es fundamental para garantizar el correcto funcionamiento de los disipadores. Si la relación D/C es menor a 1.1, significa que el disipador no ha alcanzado su fase de plasticidad, lo que indica que no está absorbiendo energía de manera óptima. En este caso, es necesario ajustar la rigidez ficticia del disipador, haciéndola mayor que la rigidez real, para mejorar su capacidad de deformación.

Por el contrario, cuando la relación D/C es mayor a 1.4, el disipador ha sobrepasado su deformación máxima, lo que representa un riesgo para la estabilidad estructural. En este escenario, se recomienda reemplazar el disipador por uno más rígido, capaz de soportar mayores cargas sin exceder sus límites de deformación.

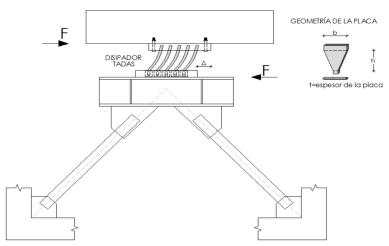
Mantener la relación D/C entre 1.1 y 1.4 asegura que los disipadores SLB trabajen eficientemente, absorbiendo la energía sísmica y protegiendo la estructura ante eventos sísmicos.

2.2.2 Disipador TADAS

Chen & Cao (2023), los disipadores TADAS (Triangular Added Damping and Stiffness) son dispositivos de amortiguamiento pasivo utilizados en la ingeniería estructural para mejorar la capacidad de una edificación de resistir las fuerzas sísmicas. Estos dispositivos consisten en placas de acero con forma triangular que se deforman plásticamente bajo cargas sísmicas, absorbiendo y disipando energía mediante la deformación plástica controlada de sus componentes triangulares. Este mecanismo ayuda a reducir significativamente las vibraciones y desplazamientos laterales de una estructura durante un evento sísmico.

a) Características principales

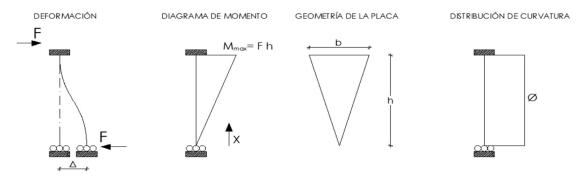
- Deformación plástica controlada: Los elementos triangulares de acero se deforman plásticamente bajo la acción de las fuerzas sísmicas, lo que permite absorber una gran cantidad de energía.
- Reducción de vibraciones y desplazamientos: La capacidad de estos disipadores para absorber energía sísmica reduce las vibraciones y desplazamientos laterales de la estructura, mejorando su estabilidad.
- Rigidez adicional: Además de proporcionar amortiguamiento, los disipadores
 TADAS también añaden rigidez a la estructura, contribuyendo a su capacidad de soportar cargas sísmicas.
- Ubicación estratégica: Pueden ser ubicados estratégicamente en los pórticos de una edificación para maximizar su eficacia en la reducción de las respuestas sísmicas.


b) Eficacia y beneficios

- Mejora en la resistencia sísmica: Los disipadores TADAS han demostrado ser muy eficaces en la mejora de la resistencia sísmica de las estructuras. Estudios han mostrado que pueden reducir los desplazamientos laterales hasta en un 40%.
- Durabilidad estructural: Al absorber la energía sísmica, estos dispositivos ayudan a proteger los elementos estructurales principales, aumentando la durabilidad de la edificación.

2.2.2.1 Funcionamiento de disipadores TADAS

El disipador TADAS tiene su lado superior empotrado de manera móvil en la viga y el lado opuesto articulado, permitiendo un desplazamiento vertical a lo largo de los agujeros ovalados para disipar energía. También se observa la geometría típica de su placa.


Figura 19Disipador TADAS

Nota: En el disipador TADAS, el desplazamiento lateral de las partes superior e inferior es relativo. Para evitar restricciones en este movimiento, el borde articulado se eleva, permitiendo una mayor flexibilidad y facilitando la disipación de energía. Fuente: Aguiar et al. (2016).

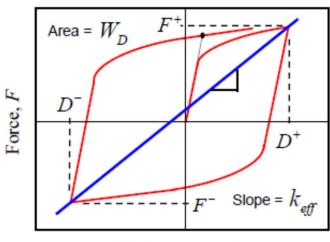

El diagrama mostrado es similar al anterior, aunque presenta algunas diferencias notables, como los cambios en el diagrama de momentos, la geometría triangular de la placa y una distribución de curvatura que ahora se observa más sencilla.

Figura 20Diagrama de comportamiento del disipador TADAS

Nota: La imagen muestra el comportamiento de un disipador TADAS, incluyendo el diagrama de deformación, el diagrama de momento, la geometría triangular de la placa, y la distribución de curvatura. El momento máximo se genera por la fuerza aplicada y la altura de la placa, lo que facilita una eficiente disipación de energía. Fuente: Aguiar et al. (2016).

Figura 21 *Modelo matemático dependiente del desplazamiento*

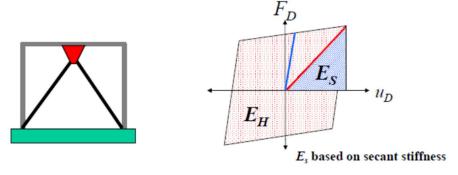
Displacement, D

Nota: La figura muestra el modelo matemático que relaciona la fuerza Fy el desplazamiento D. La curva histerética en rojo indica la disipación de energía WD, mientras que la pendiente keff representa la rigidez efectiva del sistema. Fuente: Aguiar et al. (2016).

Fuerza en el dispositivo

$$F = k_{eff} D (2.9)$$

Rigidez efectiva del dispositivo


$$k_{eff} = \frac{|F^+| + |F^-|}{|D^+| + |D^-|} \tag{2.10}$$

Relación de amortiguamiento viscoso equivalente del dispositivocn

$$k_{eff} = \frac{1}{2\pi} * \frac{W_D}{k_{eff} D_{ave}^2}$$
 (2.11)

Figura 22

Relación de amortiguamiento de los disipadores histeréticos

Nota: La relación de amortiguamiento calculada es dependiente del desplazamiento. Fuente: Aguiar et al. (2016).

Rigidez de la estructura total – disipadores

$$K_{tot} = k_s + K_{c-d} \tag{2.12}$$

Rigidez del conjunto contraviento - disipador

$$K_{c-d} = (1 - \alpha) K_{tot}$$
 (2.13)

Rigidez equivalente de un contraviento – disipador

$$k_{eq} = \frac{K_{c-d}}{N_{dic}} \tag{2.14}$$

Rigidez efectiva – disipador

$$k_{ef} = \frac{K_1 + K_2 (\mu - 1)}{\mu} \tag{2.15}$$

Rigidez de las diagonales del soporte chevron

$$k_{diag} = \frac{K_{eq} + [\beta + 2\mu \cos^2_{\theta} + \alpha_1 \beta(\mu - 1)]}{\beta[1 + \alpha_1(\mu - 1)]}$$
(2.16)

Rigidez de las diagonales del soporte chevron

$$k_{diag} = \frac{EA_{diag}}{L_{diag}} \tag{2.17}$$

2.2.2.2 Propiedades elásticas del disipador TADAS

2.2.2.2.1 Cálculo de la curvatura del disipador TADAS

Variación de momentos Mx

$$M_{(x)} = \frac{M_{m\acute{a}x} x}{h} \tag{2.18}$$

Ancho de la placa bx

$$b_{(x)} = \frac{bx}{b} \tag{2.19}$$

Según los principios de la resistencia de materiales, se sabe que:

$$\phi_{(x)} = \frac{M_{m\acute{a}x}}{E \ b \frac{t^3}{12}} = cte \tag{2.20}$$

2.2.2.2.2 Fuerza y desplazamiento de fluencia del disipador TADAS

Curvatura de fluencia:

$$\phi_{y(x)} = \frac{\varepsilon_y}{t/2} \tag{2.21}$$

Momento de fluencia:

$$m_{y(x)} = \frac{f_y \, b_{(x)} \, t^2}{6} \tag{2.22}$$

El punto donde el momento es máximo:

$$m_{y(x)} = \frac{f_y \, b \, t^2}{6} \tag{2.23}$$

Diagrama de momentos:

$$F_{y} = \frac{M_{y \, m\acute{a}x}}{h} \tag{2.24}$$

Reemplazando:

$$F_y = \frac{f_y \, b \, t^2}{6 \, h} \tag{2.25}$$

Reemplazando:

$$\Delta_{y} = \int_{0}^{h} \phi_{y(x)} x \, dx \tag{2.26}$$

$$\Delta_y = \frac{f_y h^2}{E t} \tag{2.27}$$

2.2.2.3 Rigidez elástica del disipador TADAS

$$K_{DDE} = \frac{E b t^3}{6 h^3} \tag{2.19}$$

2.2.2.4 Rigidez elástica del disipador TADAS

Las ecuaciones derivas en este apartado son para una placa triangular, sin considerar el ancho en la base, ya que su influencia es mínima.

Fuerza de fluencia

$$F_y = \frac{n \, f_y \, b \, t^2}{6 \, h} \tag{2.20}$$

Desplazamiento de fluencia

$$\Delta_y = \frac{f_y h^2}{E t} \tag{2.21}$$

Fuerza de fluencia

$$K_{DDE} = \frac{n E b t^3}{6 h^3} \tag{2.22}$$

2.2.2.5 Fuerza de corte Fu de TADAS

Momento plástico

$$M_{pm\acute{a}x} = \frac{f_y \, b \, t^2}{4} \tag{2.23}$$

Momento máximo

$$M_{nm\acute{a}x} = F_u \ h \tag{2.24}$$

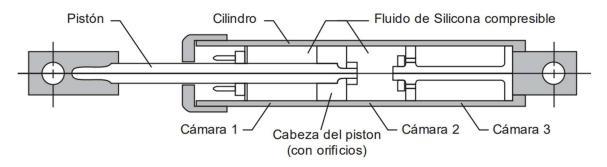
Fuerza de fluencia

$$F_u = \frac{f_y \, b \, t^2}{4 \, h} \tag{2.25}$$

2.2.3 Disipador de Fluido-Viscoso

Mendoza (2023), los disipadores de fluido viscoso son dispositivos de control pasivo utilizados en la ingeniería estructural para mitigar el impacto de fuerzas dinámicas, como las inducidas por terremotos y vientos. Estos disipadores operan mediante el movimiento de un pistón a través de un fluido viscoso, generalmente un aceite de alta viscosidad, dentro de un cilindro. La resistencia al movimiento del pistón disipa la energía cinética de las vibraciones estructurales, transformándola en calor, lo que reduce las fuerzas transmitidas a la estructura principal y mejora su capacidad de amortiguamiento.

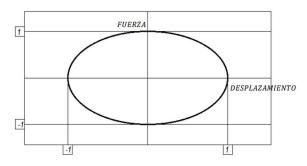
a) Características principales


- Mecanismo de funcionamiento: Consiste en un pistón que se mueve dentro de un cilindro lleno de fluido viscoso. El movimiento del pistón genera una resistencia viscosa que disipa la energía vibratoria.
- Amortiguamiento: Los disipadores de fluido viscoso proporcionan amortiguamiento adicional a la estructura, mejorando su capacidad para reducir vibraciones y desplazamientos durante eventos sísmicos.
- Aplicación versátil: Pueden ser utilizados en una variedad de estructuras, incluyendo edificios, puentes y torres de comunicación, adaptándose a diferentes configuraciones y requerimientos de diseño.
- Fácil implementación: Su diseño simple y robusto permite una fácil instalación y mantenimiento, lo que los convierte en una opción popular para mejorar la resiliencia sísmica de las estructuras.

b) Características principales

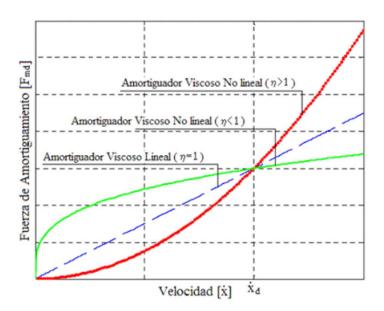
 Reducción de desplazamientos y aceleraciones: Estudios han mostrado que los disipadores de fluido viscoso pueden reducir desplazamientos laterales y aceleraciones en estructuras hasta en un 40%, proporcionando una significativa mejora en la estabilidad estructural.

- Protección de elementos estructurales: Al disipar la energía sísmica, estos dispositivos protegen los elementos estructurales principales de daños, prolongando la vida útil de la estructura y reduciendo costos de reparación.
- Desempeño confiable: Los disipadores de fluido viscoso han demostrado un desempeño confiable en numerosos eventos sísmicos, confirmando su eficacia en la mitigación de daños estructurales.


Figura 23Disipador de Fluido Viscoso

Nota: La figura muestra un esquema de un disipador de fluido viscoso, un dispositivo de control de vibraciones utilizado en estructuras para mitigar los efectos de cargas dinámicas, como terremotos. El dispositivo consta de un cilindro que contiene fluido de silicona compresible y un pistón que se mueve a través de este fluido. El pistón está conectado a una cabeza con orificios, permitiendo el paso del fluido entre las cámaras del cilindro (Cámara 1, Cámara 2 y Cámara 3). Fuente: Villarreal & Díaz la Rosa (2016).

El disipador de fluido viscoso disminuye los esfuerzos y deformaciones en la estructura, ya que su mecanismo de amortiguamiento opera desfasado respecto a las cargas que actúan sobre los elementos estructurales. Esto permite que el disipador absorba energía sin incrementar directamente las tensiones internas en dichos elementos, optimizando su respuesta ante eventos sísmicos.


Figura 24Curva histerética

Fuente: Narváez (2020)

La figura muestra cómo los disipadores de fluido viscoso no lineales generan mayores fuerzas a menores velocidades en comparación con los lineales. Los disipadores con γ >1 (rojo) y γ <1 (azul) presentan comportamientos distintos, mientras que el disipador lineal (γ =1, verde) mantiene una relación constante entre fuerza y velocidad.

Figura 25Comparación del comportamiento de disipadores de Fluido Viscoso lineales y no lineales en función de la velocidad

Fuente: Narváez (2020).

Fuerza del amortiguador

$$F = C * V^{\alpha_{vd}} \tag{2.26}$$

2.2.3.1 Diseño de amortiguadores de Fluido Viscoso

A partir de la máxima deriva calculada en las direcciones X-X y Y-Y, se procede a establecer la deriva objetivo utilizando la siguiente ecuación:

$$B = \frac{D_{m\acute{a}x}}{D_{obj}} \tag{2.27}$$

Una vez obtenido el valor de "B", se procede a calcular el amortiguamiento efectivo:

$$B = \frac{2.31 - 0.41 \ln(\beta_o)}{2.31 - 0.41 \ln(\beta_{eff})} \tag{2.28}$$

El valor de β_0 representa el amortiguamiento inherente de la estructura, que es del 5%. A partir de este, se calcula el amortiguamiento que aplicarán los dispositivos, restando el mencionado 5%:

$$\beta_h = \beta_{eff} - 5\% \tag{2.29}$$

La constante K representa la rigidez del brazo metálico y se calcula utilizando la siguiente ecuación:

$$K = \frac{E * A}{I} \tag{2.30}$$

Amortiguamiento de la estructura:

$$\beta h = \frac{\sum_{j} \lambda C_{j} \phi_{rj}^{1+\alpha} \cos(\theta_{j})^{1+\alpha}}{2\pi A^{1-\alpha} \omega^{2-\alpha} \sum_{i} m_{i} \phi_{i}^{2}}$$
(2.31)

2.2.4 Análisis dinámico modal espectral

Fuentes (2020), el análisis dinámico modal espectral es un método avanzado utilizado en la ingeniería estructural para evaluar la respuesta sísmica de edificios y otras estructuras. Este método se basa en la teoría de modos de vibración y es particularmente efectivo para estructuras complejas que están sujetas a cargas dinámicas, como las provocadas por terremotos.

a) Principios fundamentales

- Modos de vibración: Las estructuras tienen múltiples modos de vibración, cada uno
 con una frecuencia natural y una forma modal específica. El análisis modal identifica
 estos modos y calcula la respuesta de la estructura en cada uno de ellos.
- Superposición modal: La respuesta total de la estructura bajo cargas dinámicas se obtiene mediante la superposición de las respuestas modales individuales. Esto se hace utilizando un espectro de respuesta que proporciona la máxima respuesta esperada en cada modo para una determinada entrada sísmica.
- Descomposición en modos: El método descompone la respuesta dinámica en contribuciones modales, permitiendo un análisis más detallado y preciso de la respuesta estructural.

b) Pasos del análisis

- Modelo estructural: Se crea un modelo matemático de la estructura que incluye la masa, la rigidez y las propiedades de amortiguamiento.
- Análisis modal: Se lleva a cabo un análisis modal para determinar las frecuencias naturales y las formas modales de la estructura.
- Espectro de respuesta: Se aplica un espectro de respuesta sísmica, que describe cómo una estructura idealizada responde a diferentes frecuencias de excitación sísmica.
- Cálculo de respuestas modales: Se calcula la respuesta máxima de la estructura en cada modo de vibración utilizando el espectro de respuesta.
- Combinación de modos: Las respuestas modales se combinan utilizando métodos como la raíz cuadrada de la suma de los cuadrados (SRSS) o la combinación completa cuadrática (CQC) para obtener la respuesta total de la estructura.

c) Ventajas

- Precisión: Proporciona una estimación precisa de la respuesta sísmica de estructuras complejas.
- Detalle: Permite un análisis detallado de la contribución de cada modo de vibración a la respuesta total.
- Eficiencia computacional: Es más eficiente en términos de tiempo de cálculo en comparación con los análisis dinámicos no lineales de historia de tiempo.

2.2.5 Análisis dinámico no lineal tiempo - historia

Cano (2022), el análisis dinámico no lineal tiempo-historia es una técnica avanzada en la ingeniería estructural utilizada para evaluar la respuesta de las estructuras bajo cargas dinámicas, especialmente terremotos. Este método simula la aplicación de registros sísmicos reales a lo largo del tiempo, permitiendo un análisis detallado del comportamiento estructural, incluyendo los efectos no lineales de los materiales y la interacción compleja entre elementos estructurales.

a) Principios fundamentales

• Comportamiento no lineal: Este análisis considera la no linealidad de los materiales, como la plastificación, el endurecimiento, el ablandamiento y la fractura, lo que permite una evaluación más realista de la respuesta estructural.

- Historial de cargas reales: Utiliza registros de aceleración sísmica en función del tiempo, simulando la historia de carga dinámica que una estructura experimentaría durante un terremoto.
- Interacción dinámica compleja: Tiene en cuenta la interacción dinámica entre diferentes elementos estructurales y no estructurales, así como efectos como la degradación de rigidez y las grandes deformaciones.

b) Metodología

- Modelado estructural: Creación de un modelo detallado de la estructura, incorporando geometría precisa, propiedades de los materiales y condiciones de frontera.
- Selección de registros sísmicos: Selección de registros de aceleración del suelo que sean representativos de los posibles eventos sísmicos que la estructura podría enfrentar.
- Aplicación de registros: Aplicación de estos registros al modelo estructural para simular la respuesta dinámica a lo largo del tiempo.
- Integración numérica: Uso de métodos de integración numérica, como el método de Newmark o el método de Wilson-θ, para resolver las ecuaciones de movimiento no lineales.
- Análisis de resultados: Evaluación de los desplazamientos, fuerzas internas, derivas de entrepiso, daños y posibles fallas en la estructura.

2.2.6 Disipadores de energía viscoelásticos

Rodríguez & López (2021), los disipadores de energía viscoelásticos son dispositivos que combinan propiedades tanto viscosas como elásticas para absorber y disipar la energía de las vibraciones inducidas por eventos sísmicos o por cargas dinámicas de viento. Estos dispositivos se utilizan en la ingeniería estructural para mejorar la capacidad de amortiguamiento y reducir las vibraciones y desplazamientos en estructuras.

a) Principios fundamentales

• Comportamiento viscoelástico: Los materiales viscoelásticos exhiben características de los materiales viscosos (resistencia al flujo) y elásticos (capacidad de recuperar su forma original). Este comportamiento permite que los disipadores viscoelásticos absorban energía de manera eficiente y la disipen como calor.

- Absorción de energía: Cuando una estructura equipada con disipadores viscoelásticos se somete a cargas dinámicas, estos dispositivos absorben parte de la energía cinética y la transforman en energía térmica, reduciendo las fuerzas transmitidas a la estructura principal.
- Respuesta dependiente del tiempo: La respuesta de los disipadores viscoelásticos depende del tiempo y de la frecuencia de las cargas aplicadas, lo que les permite ser efectivos en una amplia gama de condiciones dinámicas.

b) Componentes y funcionamiento

- Material viscoelástico: Generalmente consiste en un polímero o compuesto elastomérico que proporciona las propiedades viscoelásticas necesarias para la disipación de energía.
- Elementos de restricción: Placas de acero u otros materiales rígidos que encapsulan el material viscoelástico, asegurando que la energía se disipe de manera controlada.
- Deformación controlada: Bajo la acción de cargas dinámicas, el material viscoelástico se deforma, absorbiendo y disipando energía a medida que se recupera lentamente a su forma original.

2.3 DEFINICIÓN DE CONCEPTOS

2.3.1 Sismicidad

La sismicidad se refiere a la frecuencia, magnitud, intensidad y distribución geográfica de los terremotos en una región específica. Este término engloba la actividad sísmica registrada a lo largo del tiempo, proporcionando datos cruciales para evaluar el riesgo sísmico de una zona. La sismicidad se analiza mediante el estudio de eventos históricos y el monitoreo continuo de la actividad sísmica, utilizando instrumentos como sismógrafos y redes de estaciones sísmicas. Comprender la sismicidad de una región es fundamental para el diseño de edificaciones seguras y la planificación de medidas de mitigación de desastres según Juárez & Loayza (2021).

2.3.2 Rótulas plásticas

Las rótulas plásticas son regiones específicas en los elementos estructurales, como vigas y columnas, donde se espera que ocurran deformaciones plásticas bajo cargas extremas, como las inducidas por un terremoto. Estas rótulas permiten que la estructura absorba y disipe

energía sísmica a través de deformaciones controladas, mejorando la capacidad de la estructura para resistir sismos sin colapsar según García & Julca (2022).

2.3.3 Ductilidad

La ductilidad es la capacidad de un material o estructura para sufrir deformaciones significativas bajo cargas extremas sin perder su resistencia. En el contexto de la ingeniería estructural, la ductilidad permite que los elementos estructurales, como vigas y columnas, absorban y disipen energía sísmica mediante deformaciones plásticas, mejorando así la capacidad de la estructura para resistir terremotos sin colapsar. La ductilidad es crucial para el diseño sismorresistente, ya que permite que las estructuras se comporten de manera segura y controlada durante eventos sísmicos, reduciendo el riesgo de fallas catastróficas según Mamani (2024).

2.3.4 Análisis no lineal

El análisis no lineal en ingeniería estructural es un método que considera el comportamiento real de los materiales y estructuras bajo cargas extremas, como las inducidas por sismos. A diferencia del análisis lineal, este enfoque tiene en cuenta las no linealidades geométricas y de los materiales, permitiendo una evaluación más precisa del desempeño estructural ante grandes deformaciones, inelasticidad y efectos de segunda orden. Este análisis es fundamental para predecir los mecanismos de falla y diseñar estructuras más seguras y resistentes según Poma (2019).

2.3.5 Curva de capacidad

La curva de capacidad es una representación gráfica que muestra la relación entre la fuerza aplicada y el desplazamiento de una estructura durante un análisis estático no lineal, conocido como "pushover". Esta curva permite evaluar el comportamiento no lineal de una estructura bajo cargas sísmicas crecientes, identificando los puntos de inicio de la plastificación y el colapso potencial. Es fundamental en la determinación del desempeño estructural y en la identificación de las capacidades de resistencia y ductilidad de la estructura según Mejía (2021).

2.3.6 Desempeño sísmico

El desempeño sísmico se refiere a la capacidad de una estructura para resistir y responder adecuadamente a eventos sísmicos, minimizando daños y protegiendo la vida de los

ocupantes. Este concepto evalúa cómo una edificación se comporta bajo diferentes niveles de intensidad sísmica, analizando la deformación, resistencia y potencial de colapso. Herramientas como el análisis no lineal y el método de espectro de capacidad son fundamentales para determinar el desempeño sísmico y asegurar que la estructura cumpla con los requisitos de seguridad según Huerta (2022).

2.3.7 Niveles de desempeño

Los niveles de desempeño son categorías que describen el grado de daño y funcionalidad de una estructura después de un evento sísmico. Estos niveles pueden variar desde un desempeño operacional, con daños mínimos y la estructura completamente funcional, hasta un desempeño de colapso, donde la estructura ha sufrido daños irreparables. Estos niveles permiten a los ingenieros establecer criterios de diseño y evaluar la seguridad y viabilidad económica de una estructura según Pérez & Torres (2022).

2.3.8 Límites de reforzamiento

Los límites de reforzamiento se refieren a las restricciones y parámetros que definen hasta qué punto una estructura puede ser reforzada para mejorar su capacidad sísmica sin comprometer su integridad original o viabilidad económica. Estos límites son esenciales en el proceso de retrofit sísmico, donde se busca maximizar la resiliencia de la estructura manteniendo su funcionalidad y seguridad según Mamani (2022).

2.3.9 Espectro de diseño

El espectro de diseño es una representación gráfica utilizada en la ingeniería sísmica para definir las demandas sísmicas que deben ser consideradas en el diseño de estructuras. Este espectro se basa en un análisis probabilístico que toma en cuenta diversas fuentes sismogénicas y leyes de atenuación para predecir la respuesta estructural bajo un sismo de referencia. El espectro de diseño es fundamental para asegurar que las estructuras puedan resistir las fuerzas sísmicas sin comprometer su integridad según Salas (2021).

2.3.10 Derivas

La deriva es la relación entre el desplazamiento lateral de un piso respecto al piso inferior y la altura entre ellos, expresada en cm/cm. Es un parámetro esencial en el análisis sísmico para evaluar la deformación lateral de una estructura durante un evento sísmico según Xu et al. (2019).

2.3.11 Desplazamientos

El desplazamiento es la medida de la distancia que un punto en una estructura se mueve desde su posición original debido a cargas aplicadas, como fuerzas sísmicas o viento. Se expresa en centímetros (cm) y es un parámetro clave en la evaluación del comportamiento estructural durante eventos sísmicos según Zhang & Xu (2018).

2.3.12 Aceleración en el centro de masa

La aceleración en el centro de masa es la medida de la tasa de cambio de la velocidad en el centro de masa de una estructura cuando esta es sometida a fuerzas externas, como las sísmicas. Es un parámetro crucial para entender cómo se distribuyen y reaccionan las fuerzas en una estructura durante un evento sísmico según Kim & Chopra (2017).

2.3.13 Energía disipada

La energía disipada es la cantidad de energía que una estructura absorbe y transforma en otras formas, como calor, a través de mecanismos como la deformación inelástica o dispositivos disipadores. Esto es esencial para reducir las vibraciones y daños durante eventos sísmicos según Chen & Guo (2022).

2.3.14 Cortante basal

La cortante basal es la fuerza horizontal total que actúa en la base de una estructura como resultado de un sismo. Esta fuerza es causada por la inercia de la masa de la estructura y es un parámetro crucial en el diseño sísmico, ya que determina la demanda de resistencia que debe soportar la base del edificio para evitar colapsos estructurales según Rinaldin et al. (2021).

2.3.15 Modos de vibración

Los modos de vibración se refieren a las diferentes formas en que una estructura puede oscilar o deformarse cuando está sometida a una excitación dinámica, como un terremoto. Cada modo tiene una frecuencia natural específica y una forma modal asociada, que describe cómo se distribuyen los desplazamientos a lo largo de la estructura. Los modos de vibración son fundamentales para realizar análisis dinámicos y asegurar que la estructura puede resistir las fuerzas inducidas por eventos sísmicos según Gao et al. (2021).

2.3.16 Configuración geométrica

La configuración geométrica se refiere a la disposición física y espacial de los elementos estructurales en un edificio o estructura. Esta configuración afecta directamente la distribución de cargas, la rigidez, y el comportamiento dinámico de la estructura, siendo un factor clave en su diseño y análisis estructural según Li & Zhang (2021).

2.3.17 Dimensión del disipador

La dimensión del disipador se refiere al tamaño físico y a las características geométricas de los dispositivos de disipación de energía, como su longitud, ancho y grosor. Estas dimensiones son críticas para determinar la efectividad del disipador en reducir las vibraciones y mejorar la respuesta sísmica de una estructura según Liu & Chen (2023).

2.3.18 Cantidad de dispositivos disipadores

La cantidad de dispositivos disipadores se refiere al número total de elementos de disipación de energía instalados en una estructura. La cantidad adecuada es crucial para asegurar una distribución uniforme de la energía disipada, lo que optimiza la respuesta sísmica y minimiza los daños estructurales durante un terremoto según Yang & Wang (2022).

CAPÍTULO III: MARCO METODOLÓGICO

3.1 HIPÓTESIS

3.1.1 Hipótesis general

El análisis comparativo del comportamiento sísmico de disipadores histeréticos SLB, TADAS y disipadores sísmicos de Fluido-Viscoso demostrara identificar la alternativa más eficaz en la resiliencia sísmica de la infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024.

3.1.2 Hipótesis específicas

- Al realizar el análisis dinámico modal espectral proporcionará información fundamental para justificar y respaldar la necesidad de incorporar los disipadores de energía SLB, TADAS y Fluido-Viscoso como medida efectiva de mejorar la resiliencia sísmica de la infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024.
- Este análisis detallado se centrará en determinar las posiciones más eficaces para maximizar la capacidad de estos disipadores de energía SLB, TADAS y Fluido-Viscoso y mejorar la resiliencia sísmica de la infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024.
- Al realizar el análisis dinámico no lineal Tiempo-Historia permitirá la evaluación de la respuesta sísmica con la implementación de los disipadores de energía SLB, TADAS y Fluido-Viscoso en la infraestructura de la Universidad Tecnológica del Perú de Tacna demostrara que los disipadores optimizan la resiliencia sísmica y se encuentran dentro del rango admisible según la norma E030 – 2024.
- Al realizar el análisis costo-beneficio abarcara costos de implementación, mantenimiento y los beneficios asociados a la mejora de la resiliencia sísmica, proporcionando una visión completa para la toma de decisiones informada en la infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024.

3.2 OPERACIONALIZACIÓN DE VARIABLES

3.2.1 Identificación de la variable independiente

• Análisis comparativo del comportamiento sísmico.

3.2.1.1 Indicadores

- Derivas (cm/cm)
- Desplazamientos (cm)
- Aceleración en el centro de masa (m/s2)
- Energía disipada (ton/m)
- Cortante basal (ton)
- Modos de vibración (s)

3.2.1.2 Escala para la medición de la variable

• Razón

3.2.2 Identificación de la variable dependiente

• Disipadores histeréticos SLB, TADAS y disipadores sísmicos Fluido-Viscoso.

3.2.2.1 Indicadores

- Configuración geométrica
- Dimensiones del disipador
- Cantidad de dispositivos disipadores
- Ubicación de dispositivos disipadores

3.2.2.2 Escala para medición de la variable

• Razón

Tabla 1 *Operacionalización de variables*

Variable	Definición conceptual	Dimensión	Indicador	Escala
Variable independiente: Análisis comparativo del comportamiento sísmico.	Se refiere al estudio		Periodos (s)	Razón
	y comparación de cómo distintas		Derivas (cm/cm)	Razón
	estructuras responden a fuerzas sísmicas. Este		Desplazamientos (cm)	Razón
	análisis evalúa diversos parámetros estructurales bajo condiciones sísmicas para determinar cuál es la más eficaz o resistente, considerando las diferencias en los diseños, materiales, y tecnologías aplicadas	Respuesta dinámica de la estructura	Fuerza cortante (tonf)	Razón
			Aceleraciones (m/s2)	Razón
			Curva histerética (Tonf-cm)	Razón
			Balance energético (Tonf/m)	Razón
Variable dependiente: Disipadores histeréticos SLB, TADAS y disipadores sísmicos de Fluido-Viscoso	Se refiere a los dispositivos utilizados en estructuras para reducir la energía	Eficiencia de la disipación de energía	Configuración geométrica	Razón
	sísmica mediante la conversión de la energía cinética en energía disipada. Los disipadores histeréticos SLB y TADAS funcionan deformándose y absorbiendo energía, mientras que los disipadores de fluido-viscoso		Dimensiones del disipador	Razón
			Cantidad de dispositivos disipadores	Razón
	disipan la energía a través de la resistencia de un fluido al movimiento.		Ubicación de dispositivos disipadores	Razón

Fuente: Elaboración propia.

3.3 TIPO DE INVESTIGACIÓN

En este estudio, se ha categorizado el tipo de investigación de la siguiente forma:

- De acuerdo al fin que se persigue: Hernández et al. (2021), esta investigación es de tipo básica, pues su objetivo es crear conocimiento esencial acerca del comportamiento sísmico de distintos tipos de disipadores en infraestructuras. Si bien los resultados podrían tener aplicaciones prácticas, la intención principal es profundizar en el conocimiento teórico dentro del ámbito de la ingeniería sísmica, lo que ayudará en el desarrollo futuro de soluciones tecnológicas.
- De acuerdo a los tipos de datos analizados: Creswell & Creswell (2018), esta investigación se sitúa en el enfoque cuantitativo, ya que tiene como objetivo entender la realidad a través de la recolección y análisis de datos, lo cual facilitará la respuesta a la pregunta de investigación y la validación de la hipótesis planteada.
- De acuerdo a la Metodología para demostrar la hipótesis: Babbie (2021), esta investigación se clasifica como no experimental, con un diseño transversal y descriptivo. Es no experimental porque las variables en estudio no se manipulan, manteniéndose en su estado natural para preservar su integridad. El enfoque es transversal porque la recolección de datos se realiza en un único punto temporal. Además, se considera descriptiva ya que se enfoca en analizar, identificar y comprender los atributos y características principales de los elementos de estudio, lo que permite una comprensión más detallada y profunda de su naturaleza. El nivel de esta investigación es explicativo, porque trata de explicar el daño estructural causado por la acción del sismo.

3.4 NIVEL DE INVESTIGACIÓN

Hernández et al. (2021), esta investigación es de nivel Descriptivo-Explicativo. Este nivel permite describir las características y comportamientos observados y, además, explicar las causas y relaciones subyacentes entre las variables estudiadas.

3.5 DISEÑO DE INVESTIGACIÓN

Hernández et al. (2021), el diseño de esta investigación es no experimental es aquel en el que el investigador no manipula las variables independientes para observar su efecto sobre las variables dependientes. En su lugar, las variables se observan tal como ocurren naturalmente. Este tipo de diseño es ideal para estudios descriptivos y correlacionales donde

se busca entender y analizar fenómenos tal como se presentan en el entorno sin intervención directa. Es común en estudios donde se desea estudiar la relación entre variables o el comportamiento de un fenómeno en condiciones reales.

3.6 ÁMBITO Y TIEMPO SOCIAL DE INVESTIGACIÓN

La investigación se desarrolla en el ámbito de la infraestructura de la Universidad Tecnológica del Perú en Tacna, un entorno que ofrece un contexto ideal para analizar el comportamiento sísmico de diferentes tipos de disipadores aplicados a edificaciones en una región de alta actividad sísmica. El tiempo social de la investigación se enmarca en el año 2024, un periodo marcado por la creciente demanda de soluciones tecnológicas que fortalezcan la resiliencia sísmica de infraestructuras críticas, como las instituciones educativas.

3.7 POBLACIÓN Y OBJETO DE ESTUDIO

3.7.1 Unidad de estudio

La unidad de estudio es la Universidad Tecnológica del Perú, ubicado en el distrito de Tacna. Esta estructura será analizada para evaluar cómo la implementación propuesta de disipadores histeréticos SLB, TADAS, y de Fluido-viscoso podría mejorar su respuesta dinámica ante eventos sísmicos.

3.7.2 Población

La población de interés para este estudio es un edificio de diez niveles con dos niveles de sótano, ubicado en el distrito de Tacna.

3.7.3 Muestra

Arias (2012), el tipo de muestra será intencionada, universidad de diez niveles en el distrito de Tacna. Este edificio presenta características arquitectónicas y estructurales adecuadas para la implementación o evaluación de los disipadores histeréticos SLB, TADAS, y de Fluido-viscoso. La muestra estará constituida por estas estructuras específicas, elegidas con base en criterios de representatividad y relevancia para el análisis sísmico propuesto.

3.8 PROCEDIMIENTO, TÉCNICAS E INSTRUMENTOS

3.8.1 Procedimiento

En este estudio, se propone una secuencia de acciones organizadas en múltiples fases, que se detallan a continuación:

- Etapa 1: Se ejecutará una investigación bibliográfica sobre los disipadores de energía aplicados en infraestructuras.
- Etapa 2: Recopilación de datos provenientes de los planos y cálculos estructurales para el análisis y diseño sísmico implementando disipadores de energía en estructura de la UTP de Tacna.
- Etapa 3: Realizar un estudio de la estructura desde el punto de vista sísmico de la UTP implementando disipadores SLB.
- Etapa 4: Realizar Un estudio de la estructura desde el punto de vista sísmico de la UTP implementando disipadores tipo TADAS.
- Etapa 5: Realizar Un estudio de la estructura desde el punto de vista sísmico de la UTP implementando disipadores de Fluido-Viscoso.
- Etapa 6: Finalmente se realizará el análisis comparativo de los hallazgos obtenidos de la respuesta sísmica mediante los disipadores de energía.
- Etapa 7: Evaluar los resultados demostrara identificar la alternativa más eficaz en la resiliencia sísmica de la estructura de la UTP de Tacna.

3.8.2 Técnicas

En este estudio, se emplearán principalmente las siguientes técnicas:

- Datos provenientes de planos de arquitectura, análisis estructurales y modelado en Etabs de la estructura de la UTP de Tacna.
- Reglamento nacional de edificaciones (E.020, E.030, E.060 y E.070).
- Reglamentos internacionales como ACI -318, ASCE 41-17, FEMA P58 y ASCE 7-20.
- Se utilizarán libros, cursos y talleres como apoyo para realizar el análisis, diseño estructural y evaluación de infraestructuras que incorporen disipadores de energía.

3.8.3 Instrumentos

Los dispositivos y/o herramientas a utilizar serán:

- Microsoft Office
- Software Etabs V20
- SAP 2000
- AutoCAD 2020

CAPÍTULO IV: RESULTADOS

4.1 DESCRIPCIÓN DEL TRABAJO DE CAMPO

El proyecto en cuestión se lleva a cabo en la Universidad Tecnológica del Perú, una institución educativa de gran prestigio en la región. Esta nueva sede se encuentra estratégicamente ubicada en la avenida Billinghurst N°800, dentro de la zona de Pago Collana, lo que le confiere una posición privilegiada en el distrito, provincia y región de Tacna. La ubicación en una avenida principal asegura fácil acceso y visibilidad, beneficiando tanto a los estudiantes como a la comunidad en general.

La Universidad Tecnológica del Perú S.A.C., como entidad representante y promotora del proyecto, ha seleccionado esta área debido a su zonificación favorable, clasificada como comercio zonal (R6-RDA). Esta clasificación permite el desarrollo de instalaciones educativas de gran envergadura, lo que se alinea con el objetivo de proporcionar un entorno académico de primer nivel.

El terreno destinado para este proyecto tiene una superficie total de 4,338.95 m². De esta área, 19,210.42 m² han sido designados para la construcción de la infraestructura educativa, distribuidos en 10 niveles sobre el nivel del suelo, más una azotea. Esta configuración de pisos maximiza el uso del espacio vertical, permitiendo albergar una gran cantidad de instalaciones académicas y administrativas.

Además, el proyecto ha considerado cuidadosamente el entorno y el bienestar de sus usuarios, dejando un área libre de 2,250.19 m², lo que representa el 51.86% del total del terreno. Estas áreas libres no solo cumplen con las normativas urbanísticas, sino que también ofrecen espacios abiertos para la recreación y el esparcimiento de los estudiantes y el personal.

Ubicación

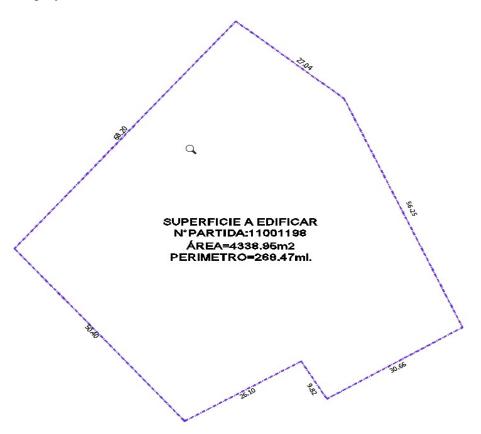
El proyecto está ubicado en la avenida Billinghurst N°800, en la zona de Pago Collana, dentro del distrito, provincia y región de Tacna.

Nota: La figura muestra la ubicación exacta de la Universidad Tecnológica del Perú en la Avenida Billinghurst N°800, zona de Pago Collana, en Tacna. El campus está estratégicamente situado cerca de importantes vías de acceso, facilitando la conexión con la ciudad y su entorno urbano. Fuente: Google Maps.

Area del Terreno y linderos

El lote se encuentra inscrito bajo la partida N°11139993, y actualmente se está tramitando el contrato de compraventa para un área de 4,338.95 m², delimitada por los siguientes linderos y medidas perimétricas:

- Frente: Colinda con la Av. Jorge Basadre Grohmann, en un tramo recto de 68.20 metros lineales.
- Lado derecho: Colinda con la Av. Billinghurst, en un tramo recto de 50.40 metros lineales.
- Lado izquierdo: Colinda con un área cedida para vías (pasaje peatonal), en una línea quebrada de dos tramos: uno de 27.04 metros lineales y otro de 56.25 metros lineales.


Fondo: Presenta una línea quebrada dividida en tres tramos de 26.10 metros lineales,
 9.82 metros lineales y 30.66 metros lineales.

El proyecto consiste en la construcción de una sede educativa para la Universidad Tecnológica del Perú.

La edificación está compuesta por un edificio de 10 pisos más una azotea y dos niveles de sótanos. El área total construida es de 19,210.42 m², de los cuales 16,422.79 m² corresponden a la construcción sobre el nivel del suelo y 2,787.63 m² a los sótanos. El terreno de 4,338.95 m² cuenta con un área libre que representa el 51.86% de la superficie total. Además, se han dispuesto 92 plazas de estacionamiento, ubicadas en el sótano 1.

Figura 27

Plano de la superficie

Nota: La figura muestra el plano de la superficie destinada a la edificación, registrada con el número de partida 11001198. El área total a edificar es de 4338.96 m², con un perímetro de 268.47 ml. Este plano es esencial para definir los límites de construcción y planificar el diseño estructural del proyecto. Fuente: Elaboración propia.

4.2 DISEÑO DE LA PRESENTACIÓN DE LOS RESULTADOS

4.2.1 Modelamiento estructural y estado actual

En esta primera etapa, se pretende evaluar la situación actual de esta infraestructura mediante un análisis dinámico modal espectral. Este análisis es fundamental para entender cómo responde la estructura a los diferentes modos de vibración inducidos por un sismo, identificando las posibles vulnerabilidades y áreas de mejora. Utilizando el software ETABS, se modelará la estructura para simular su comportamiento bajo condiciones sísmicas y justificar la incorporación de disipadores de energía tipo SLB, TADAS y de Fluido-viscoso.

Este enfoque permitirá establecer una base sólida para la comparación de diferentes tecnologías de disipación de energía, contribuyendo a la toma de decisiones informadas que optimicen la seguridad y estabilidad de la infraestructura educativa. La información obtenida en esta etapa será crucial para la planificación de intervenciones posteriores que refuercen la estructura y garanticen la protección de sus ocupantes frente a futuros eventos sísmicos.

4.2.1.1 Características de los materiales

Concreto

•	Resistencia a la compresión (f'c)	:	280,00	kg/cm2
•	Módulo de elasticidad (Ec)	:	250998,01	kg/cm2
•	Módulo de corte (Gc=Ec/2(μc+1))	:	109129,57	kg/cm2
•	Módulo de poisson (μc)	:	0,15	

Acero

• Esfuerzo de fluencia (fy) : 4200,00 kg/cm2

4.2.1.2 Cargas unitarias

Pesos volumétricos

• Peso volumétrico del concreto armado : 2400,00 kg/cm3

Techos

•	Peso de la losa aligerada (h=0.25m)	:	350,00	kg/m2
•	Acabados	:	120,00	kg/m2
•	Tabiquería repartida	:	250,00	kg/cm2

•	Sobrecarga en aulas	:	250,00	kg/cm2
•	Sobrecarga en corredores y escaleras	:	400,00	kg/cm2
•	Sobrecarga en azotea	:	100,00	kg/cm2

4.2.1.3 Configuración estructural

La configuración estructural se refiere a la disposición y organización de los elementos estructurales dentro de un edificio o estructura, como columnas, vigas, muros, losas y fundaciones. Esta configuración define cómo estos elementos trabajan conjuntamente para resistir y transferir las cargas aplicadas, tales como cargas muertas, cargas vivas, y fuerzas dinámicas como las inducidas por terremotos o viento.

a) Zonificación, E.030 (Art.10)

Tabla 2

Zonificación E.030 (Art.10)

Zonific	ación
Departamento	Tacna
Provincia	Tacna
Distrito	Tacna
Zona sísmica	4,00
Z	4,00 0,45 g

Nota: La Tabla muestra la zonificación sísmica según la Norma E.030, Artículo 10, correspondiente a la región de Tacna. Se detalla que el departamento, provincia y distrito de Tacna están ubicados en la Zona Sísmica 4, con un factor de zona Z de 0,45g. Este factor es crucial para el diseño sismorresistente de edificaciones en esta región, ya que representa la aceleración máxima del terreno con una probabilidad del 10% de ser excedida en un período de 50 años. Fuente: Elaboración propia.

b) Condiciones geotécnicas, E.030 (Art.12)

El análisis sismorresistente de una estructura depende en gran medida de las características del suelo sobre el cual se erige. Según la norma E.030, artículo 12, es fundamental clasificar el tipo de suelo.

Siendo según el perfil del suelo un S1, para este tipo de suelo, que se clasifica como muy rígido y comprende rocas fracturadas, arenas muy densas, gravas arenosas densas y arcillas muy compactas (con un espesor menor a 20 metros), corresponden los siguientes parámetros geotécnicos esenciales que se utilizarán en el análisis sismorresistente de la estructura.

Tabla 3Condiciones geotécnicas, E.030 (Art.12)

Condiciones geotécnicas				
Tipo	Roca rígida			
Š	1,00			
TP	0,40			
TL	2,50			
V_{S}	500,00 m/s a 1500,00 m/s			
N60	>50,00			
Su	>100,00 kpa			
qu	5,00 kg/cm2 a 1,00 kg/cm2			

Nota: La tabla 3 presenta las condiciones geotécnicas correspondientes al perfil de suelo tipo S1, según la norma E.030, artículo 12. Este perfil se caracteriza por su rigidez, con propiedades geotécnicas que incluyen un factor de amplificación sísmica S=1, un periodo fundamental de vibración TP=0,40 segundos y un periodo límite superior TL=2,5 segundos. La velocidad de propagación de las ondas de corte Vs varía entre 500 m/s y 1500 m/s. Adicionalmente, se destacan parámetros como N60>50, resistencia al corte no drenado Su>100 kPa, y resistencia última qu que oscila entre 5,00 kg/cm² y 1,00 kg/cm². Estos parámetros son esenciales para el análisis sismorresistente y la evaluación del comportamiento estructural bajo cargas sísmicas. Fuente: Elaboración propia.

c) Categoría del edificio, E.030 (Art. 15)

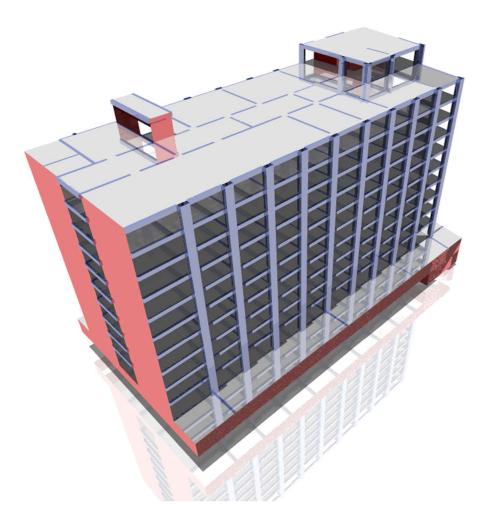
Para esta edificación, clasificada como A2_Esenciales y destinada a ser una universidad, se asigna un factor de uso o importancia U=1,5, este factor se aplica a edificaciones esenciales cuya función no debe interrumpirse inmediatamente después de un sismo severo. Además, estas estructuras pueden servir como refugio después de un desastre y, dado su rol crítico, su colapso representaría un riesgo adicional significativo.

El análisis sismorresistente de una estructura depende en gran medida de las características del suelo sobre el cual se erige. Según la norma E.030, artículo 12, es fundamental clasificar el tipo de suelo.

d) Sistema estructural y restricciones de irregularidad, E.030 (Art. 17 y Art. 21)

Para esta edificación, se ha definido un sistema estructural compuesto por estructuras de acero del tipo SCBF y EBF, así como estructuras de concreto que incluyen un sistema dual con muros de concreto armado y albañilería armada o confinada. Además, se establece que no se permiten irregularidades en la estructura, asegurando así la uniformidad y estabilidad del diseño, conforme a las normativas sismorresistentes.

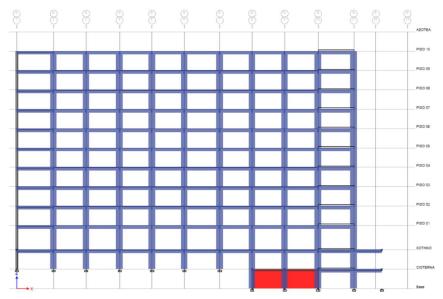
e) Coeficiente básico de reducción de fuerzas sísmicas, E.030 (Art. 18)


El sistema estructural definido para la dirección X de la edificación utiliza concreto armado como material principal, implementando un sistema dual. Este sistema estructural se caracteriza por un factor de reducción sísmica Rox=7, que refleja la capacidad de la estructura para disipar energía bajo cargas sísmicas, de acuerdo con los parámetros establecidos para este tipo de sistemas.

El sistema estructural definido para la dirección Y de la edificación utiliza concreto armado como material principal, implementando un sistema de muros estructurales. Este sistema se caracteriza por un factor de reducción sísmica Roy=6, lo que indica la capacidad del sistema para disipar energía durante un evento sísmico, conforme a los estándares aplicables para este tipo de estructura.

4.2.1.4 Modelo estructural

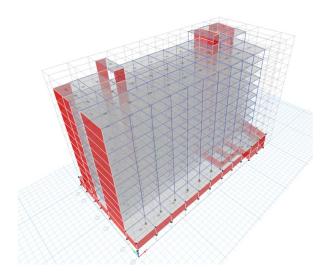
El comportamiento dinámico de las estructuras se evalúa a través de la creación de modelos matemáticos que integran la contribución de los elementos estructurales, como vigas, columnas y muros de concreto, para determinar la rigidez lateral de cada nivel de la edificación. Dado que las fuerzas sísmicas son de naturaleza inercial y proporcionales al peso de la estructura, es esencial definir con precisión la cantidad y distribución de las masas dentro de la misma. A continuación, se presentan las figuras que ilustran el modelo estructural empleado para analizar el comportamiento dinámico de la edificación.


Figura 28 *Modelo estructural de la Universidad Tecnológica del Perú*

Nota: La figura muestra el modelo estructural de la Universidad Tecnológica del Perú, elaborado utilizando el software ETABS V20.0. En este modelo tridimensional se visualiza la disposición de los elementos estructurales, incluyendo columnas, vigas y muros. Este modelo es crucial para evaluar el comportamiento de la edificación bajo condiciones sísmicas, permitiendo optimizar el diseño para cumplir con las normativas sismorresistentes y garantizar la seguridad estructural del edificio. Fuente: Elaboración propia.

La figura 29 muestra la estructura del edificio, que consta de diez pisos, una azotea, un sótano y una cisterna. La cisterna, con una altura de 3,55 m; se encuentra en la base, seguida por el sótano con la misma altura y una elevación de 7,1 m. El primer nivel tiene una altura mayor de 4,5 m y una elevación de 11,6 m. Los niveles 2 al 10 mantienen una altura constante de 3,55 m cada uno, con una elevación máxima de 43,55 m en el décimo piso. La azotea, ubicada a una elevación de 47,1 m, completa la estructura. Esta disposición es esencial para evaluar las cargas vivas y las fuerzas sísmicas en la edificación.

Figura 29Vista en elevación de la estructura



Nota: La figura muestra una vista en elevación de la estructura elaborada en ETABS, donde se resaltan los niveles y elementos estructurales. Fuente: Elaboración propia.

4.2.1.5 Carga viva y carga muerta aplicadas a la estructura

La figura 30 muestra la representación 3D de la estructura en ETABS, donde se han asignado tanto cargas vivas como cargas muertas a los elementos estructurales. Las áreas en rojo resaltan las zonas donde se han aplicado las cargas muertas (Dead Load), que corresponden al peso propio de los elementos permanentes de la edificación, como losas, vigas, columnas y paredes, con valores que varían entre 120,00 kgf/m² y 370,00 kgf/m². Por otro lado, las cargas vivas (Live Load), que representan fuerzas temporales generadas por la ocupación y el uso cotidiano de la edificación, se han distribuido de manera uniforme en todos los niveles, con valores entre 250,00 kgf/m² y 400,00 kgf/m², dependiendo de la función y ocupación de cada piso. Este modelado permite evaluar el comportamiento estructural ante las cargas permanentes y temporales, siguiendo las normativas vigentes (E.020) para garantizar la seguridad y estabilidad de la edificación.

Figura 30Distribución de cargas vivas y muertas en el modelado ETABS

Nota: Presenta la distribución de cargas vivas y muertas en el modelo estructural de ETABS. Fuente: Elaboración propia.

Resumen de parámetros sísmicos

Tabla 4 *Resumen de parámetros sísmicos*

Resumen de parámetros sísmicos						
Factor de zona	Factor de zona $Z = 0.45$ (Zona 4)					
Factor de uso	U = 1,50 (Categoría A2_Esenciales)					
Factor de Suelo	S = 1,00 (Suelo Rígido)					
Periodos plataforma	TP = 0.40 s					
	TL = 2,50 s					
Muros estructurales y pórticos C.A.	Rx = 7,00					
Muros estructurales C.A.	Ry = 6,00					

Nota: En mi lugar de estudio, la Universidad Tecnológica del Perú (UTP), se han aplicado las cargas conforme a la normativa vigente y se ha considerado un factor de zona de Z=0,45, correspondiente a la Zona 4. El factor de uso es U=1,50, clasificado como categoría A2_Esenciales, y el factor de suelo es S=1,00, indicando suelo rígido. Los periodos de la plataforma son TP=0,40 y TL=2,50 s. Además, con valores de Rx=7,00 para muros estructurales y pórticos de concreto armado (CA) y Ry=6,00 para muros estructurales de concreto armado. Esta distribución se realizó conforme a los planos estructurales y la normativa vigente E020. Fuente: Elaboración propia.

Periodos y modos de vibración

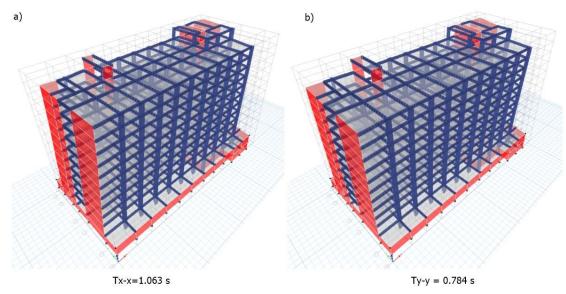

El programa ETABS calcula las frecuencias naturales todos los modos de vibración considerados por ser los más representativos de la estructura y porque la suma de masas efectivas es mayor al 90,00 % de la masa total. En la tabla se muestran los periodos de vibración con su porcentaje de masa participante que indicará la importancia de cada modo en su respectiva dirección.

Tabla 5 *Modos de vibración*

Modo	Periodo (s)	UX	UY	Sum UX	Sum UY	Sum RZ
01	1,0630	0,6974	0,0062	0,6974	0,0062	0,0077
02	0,7840	0,0063	0,6570	0,7037	0,6632	0,0087
03	0,5680	0,0095	0,0033	0,7132	0,6664	0,6596
04	0,2970	0,1206	0,0010	0,8338	0,6674	0,6613
05	0,1790	0,0009	0,1633	0,8346	0,8308	0,6613
06	0,1420	0,0388	0,0026	0,8735	0,8333	0,6624
07	0,1400	0,0060	0,0018	0,8795	0,8351	0,6821
08	0,1240	0,0026	0,0009	0,8821	0,8360	0,8332
09	0,0850	0,0223	0,0000	0,9043	0,8360	0,8341
10	0,0800	0.0004	0,0471	0,9043	0,8831	0,8342
11	0,0600	0,0129	0,0001	0,9172	0,8832	0,8389
12	0,0560	0,0007	0,0003	0,9179	0,8835	0,8826
13	0,0520	0,0013	0,0133	0,9193	0,8968	0,8832
14	0,0490	0,005	0,0078	0,9241	0,9045	0,8836
15	0,0430	0,0155	0,0012	0,9396	0,9057	0,8837
16	0,0390	0,0152	0,0019	0,9549	0,9076	0,8839
17	0,0370	0,0008	0,0109	0,9557	0,9184	0,8879
18	0,0360	0,0005	0,0019	0,9561	0,9203	0,9052
19	0,0350	0,0000	0,0007	0,9562	0,9211	0,9067
20	0,0340	0,0000	0,0055	0,9562	0,9266	0,9076

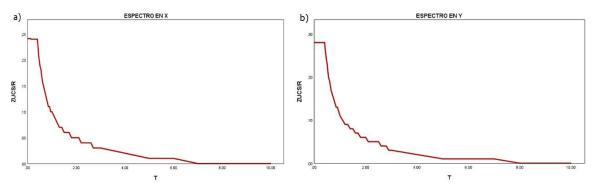
Nota: Los modos de vibración cumplen con la normativa vigente, asegurando que la suma de las masas efectivas en las direcciones X e Y supera el 90,00% de la masa total, lo que garantiza una adecuada modelación del comportamiento dinámico de la estructura. Fuente: Elaboración propia.

Figura 31 *Periodos fundamentales del edificio*

Nota: Los gráficos muestran los periodos fundamentales de vibración del edificio en las direcciones X e Y. En la figura a), el periodo en la dirección X (Tx-x) es de 1,063 segundos, mientras que en la figura b), el periodo en la dirección Y (Ty-y) es de 0,784 segundos. Estos periodos son críticos para la evaluación de la respuesta dinámica de la estructura bajo cargas sísmicas, ya que determinan la frecuencia natural del edificio y su comportamiento frente a las excitaciones sísmicas según la Norma Técnica E.030. Fuente: Elaboración propia.

Verificación por peso

Tabla 6Peso de la estructura


Nivel	tonf-s²/m	Peso (Tn)	Peso acumulado (Tn)
Azotea	30,13	295,60	295,60
10	158,16	1551,53	1847,13
09	198,85	1950,68	3797,82
08	198,85	1950,68	5748,50
07	198,85	1950,68	7699,18
06	198,85	1950,68	9649,87
05	198,85	1950,68	11600,55
04	198,85	1950,68	13551,24
03	198,85	1950,68	15501,92
02	198,85	1950,68	17452,61
01	204,73	2008,40	19461,00
Sótano	272,55	2673,67	22134,68
Cisterna	123,67	1213,18	23347,86
Base	27,14	23347,86	

Nota: La estructura se analizó en su estado construido, aplicando los criterios de carga sísmica según la normativa E.030: el 100,00% de la carga muerta, el 50,00% de la carga viva y el 25,00% de la carga viva en la azotea. Los valores presentados en la tabla fueron obtenidos mediante un análisis detallado en el software ETABS. Fuente: Elaboración propia.

Análisis dinámico modal espectral

Con base en la información recopilada y los parámetros previamente justificados, se procedió a generar el espectro de pseudoaceleraciones que se presenta en la figura 32. En este caso, se han obtenido dos espectros debido a que las características en ambas direcciones son diferentes.

Figura 32 *Espectro de diseño*

Nota: El espectro de diseño lineal según la normativa E.030 se presenta para las direcciones X (a) e Y (b), considerando los parámetros sísmicos resumidos. Este análisis es crucial para evaluar la respuesta estructural bajo las condiciones sísmicas establecidas en el proyecto de la Universidad Tecnológica del Perú (UTP). Fuente: Elaboración propia.

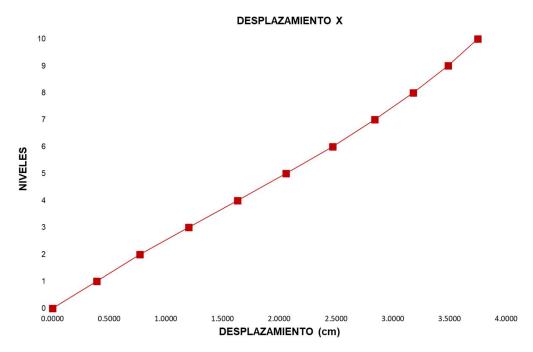

Dirección en X

Tabla 7Desplazamientos y derivas en dirección en X

Nivel	Desplazamiento (cm)	$\Delta \mathbf{x}$
10	3,75	0,0042
09	3,49	0,0048
08	3,18	0,0053
07	2,84	0,0058
06	2,47	0,0062
05	2,06	0,0064
04	1,63	0,0065
03	1,20	0,0063
02	0,77	0,0056
01	0,39	0,0045

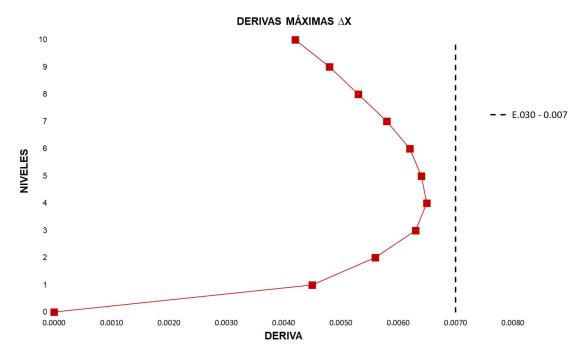

Nota: La tabla presenta los desplazamientos máximos y las derivas inelásticas de entrepiso más críticas obtenidas en el análisis estructural. Estos parámetros son fundamentales para evaluar la respuesta dinámica de la edificación bajo acciones sísmicas, garantizando la adherencia a los lineamientos de diseño especificados en las normativas vigentes. Fuente: Elaboración propia.

Figura 33Desplazamiento en X

Nota: El gráfico muestra el desplazamiento lateral en la dirección X, con un máximo de 3,75 cm en el nivel superior, confirmando que los desplazamientos se ajustan a los límites establecidos por la norma técnica E.030 para asegurar la rigidez y estabilidad lateral. Fuente: Elaboración propia.

Figura 34Deriva E.030 dirección en X

Nota: La línea vertical indica el límite máximo de deriva de 0,007 conforme a la norma técnica E.030. Las derivas en la dirección X, con un máximo de 0,0065; cumplen con los requisitos de seguridad sismorresistente. Fuente: Elaboración propia.

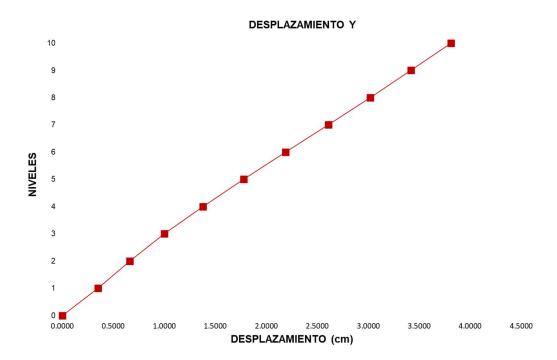

Dirección en Y

Tabla 8Desplazamientos y derivas en dirección en Y

Nivel	Desplazamiento (cm)	$\Delta \mathbf{Y}$
10	3,81	0,0050
09	3,42	0,0052
08	3,02	0,0053
07	2,61	0,0053
06	2,19	0,0053
05	1,78	0,0051
04	1,38	0,0048
03	1,00	0,0044
02	0,66	0,0039
01	0,35	0,0033

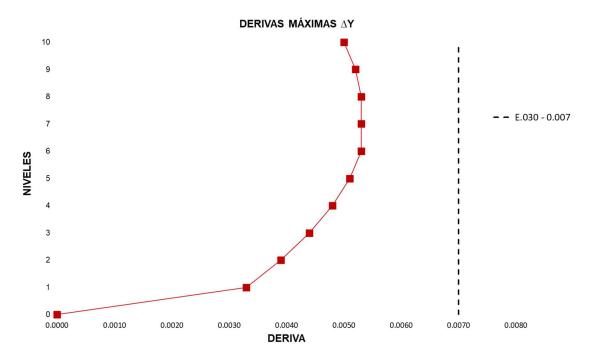

Nota: La tabla presenta los desplazamientos máximos y las derivas inelásticas de entrepiso más críticas obtenidas en el análisis estructural. Estos parámetros son fundamentales para evaluar la respuesta dinámica de la edificación bajo acciones sísmicas, garantizando la adherencia a los lineamientos de diseño especificados en las normativas vigentes. Fuente: Elaboración propia.

Figura 35Desplazamiento en Y

Nota: El gráfico muestra el desplazamiento lateral en la dirección Y, con un máximo de 3,81 cm en el nivel superior, confirmando que los desplazamientos se ajustan a los límites establecidos por la norma técnica E.030 para asegurar la rigidez y estabilidad lateral. Fuente: Elaboración propia.

Figura 36Deriva E.030 dirección en Y

Nota: La línea vertical indica el límite máximo de deriva de 0,007 conforme a la norma técnica E.030. Las derivas en la dirección Y, con un máximo de 0,0053; cumplen con los requisitos de seguridad sismorresistente. Fuente: Elaboración propia.

Fuerza cortante mínima

Conforme a lo estipulado en el art. 29.4, es imprescindible asegurar que el cortante en la base calculada a través del análisis dinámico, en cada una de las direcciones consideradas, sea al menos el 80,00% del cortante en la base derivada del análisis estático.

 Tabla 9

 Cortante estático y dinámico del edificio

Cortante mínima / Escalar sismo						
Dirección	Cortante	V (Tonf)	Vd/Ve (%)	Verificación		
V	Estática	1582,6483	09.76	No accolon		
X	Dinámica	1563,0642	98,76	No escalar		
V	Estática	2503,5049	92,37	No escalar		
	Dinámica	2342,6039				

Nota: De acuerdo con el artículo 29.4 de la norma técnica E.030, se establece que el cortante en la base resultante del análisis dinámico para cada dirección evaluada debe ser al menos el 80,00% del cortante en la base obtenida mediante el análisis estático. En la tabla, se observa que en la dirección X, el cortante dinámico alcanza el 98,76% del cortante estático, lo cual indica que no es necesario aplicar un factor de escala en esa dirección. Sin embargo, en la dirección Y, el cortante dinámico es el 92,37% del cortante estático, cumpliendo con la normativa, pero sugiriendo que se debe ajustar con un factor de escalada para asegurar que la relación Vd/Ve se mantenga dentro de los límites. aceptables. Fuente: Elaboración propia.

Definición del sistema vulnerable

Para seleccionar el sistema estructural más adecuado en el que se implementarán los tres tipos de disipadores sísmicos propuestos, se llevó a cabo un análisis detallado. Inicialmente, se aplicó un factor de reducción R igual a 1, en conformidad con las directrices de la norma técnica E.030 para el diseño sismorresistente. Este paso permitió analizar el desempeño de la estructura sin considerar las capacidades de disipación de energía. Posteriormente, se llevó a cabo un análisis lineal de tiempo-historia cual es recomendado por la normativa internacional como una herramienta efectiva para simular la respuesta de estructuras bajo cargas sísmicas.

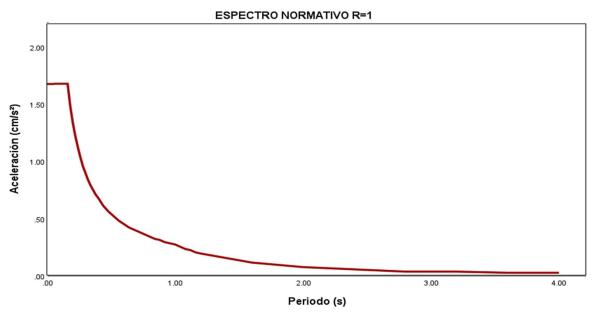
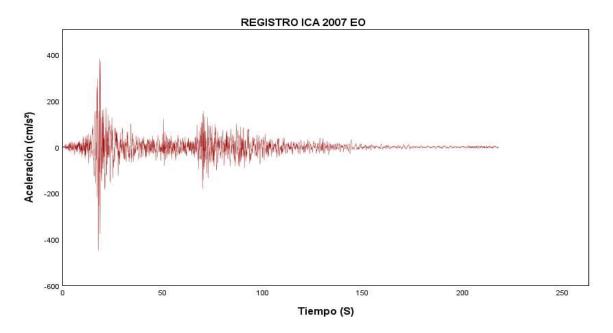

Este análisis permitió identificar los elementos más vulnerables de la estructura, es decir, aquellos que presentan mayores desplazamientos y esfuerzos bajo la acción sísmica. La identificación de estas áreas vulnerables es fundamental para una adecuada selección y localización de los disipadores sísmicos, asegurando que se implementen en las zonas donde serán más efectivos para incrementar la seguridad y optimizar el desempeño de la estructura durante un evento sísmico.

Tabla 10Desplazamientos absolutos y relativos X

		Dirección X		
Niveles	Desplazamiento absoluto	Relativo (m)	H(m)	Deriva ∆x
10	0,242840	0,016598	3,55	0,0047
09	0,226242	0,019494	3,55	0,0055
08	0,206748	0,021905	3,55	0,0062
07	0,184843	0,024255	3,55	0,0068
06	0,160588	0,026270	3,55	0,0074
05	0,134318	0,027718	3,55	0,0078
04	0,106600	0,028304	3,55	0,0080
03	0,078296	0,027585	3,55	0,0078
02	0,050711	0,024984	3,55	0,0070
01	0,025727	0,025727	4,50	0,0057

Nota: La tabla muestra los desplazamientos absolutos y relativos, así como las derivas de entrepiso para cada nivel en la dirección X. Se destaca que, en el cuarto nivel, la deriva máxima alcanza un valor de 0,008, el cual excede el límite permisible de 0,007 según la norma técnica E.030. Este exceso indica la necesidad de revisar y posiblemente reforzar la estructura en dicho nivel para satisfacer los criterios de rigidez y seguridad sísmica. Fuente: Elaboración propia.

Figura 37Espectro normativo E.030 R=1



Nota: El gráfico muestra el espectro normativo según la norma técnica E.030 para un factor de respuesta R=1. Este espectro es utilizado como referencia para el diseño sismorresistente, asegurando que las estructuras puedan resistir las fuerzas sísmicas de acuerdo con las especificaciones normativas. Fuente: Elaboración propia.

Selección de registros

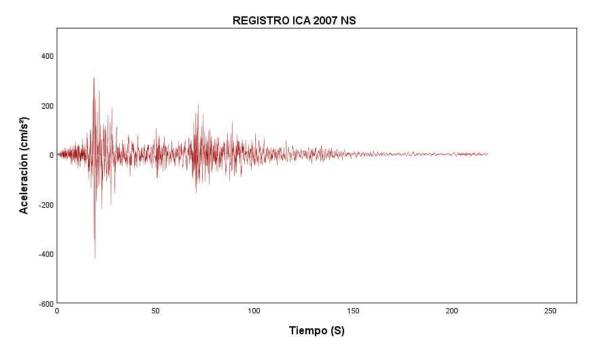

Los registros sísmicos presentados corresponden a terremotos históricos en Perú, específicamente los de Ica en 2007, Lima en 1966 y 1974. Estos registros capturan las aceleraciones en diferentes direcciones (norte-sur, este-oeste) y son fundamentales para el análisis dinámico de estructuras. Al utilizar estos registros, se busca evaluar cómo las edificaciones responden a movimientos sísmicos reales, asegurando que el diseño estructural sea seguro y cumpla con las normativas vigentes, como la norma técnica E.030. Estos análisis permiten identificar posibles vulnerabilidades en la estructura y garantizar su estabilidad y seguridad bajo condiciones sísmicas.

Figura 38 *Registro Ica 2007 este a oeste*

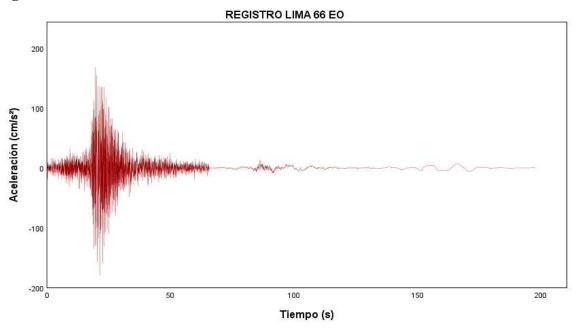

Nota: El gráfico presenta el registro sísmico del evento de Ica 2007 en la dirección este-oeste, utilizado para analizar la respuesta estructural de la edificación y verificar la conformidad con los criterios de diseño sísmico establecidos en la norma técnica E.030. Fuente: Elaboración propia.

Figura 39 *Registro Ica 2007 norte a sur*

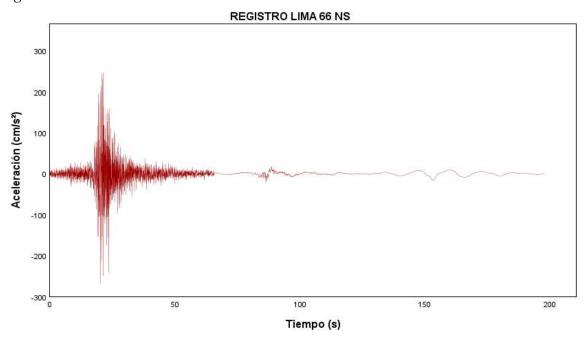

Nota: El gráfico presenta el registro sísmico del evento de Ica 2007 en la dirección norte-sur, utilizado para analizar la respuesta estructural de la edificación y verificar la conformidad con los criterios de diseño sísmico establecidos en la norma técnica E.030. Fuente: Elaboración propia.

Figura 40 *Registro Lima 1966 este a oeste*

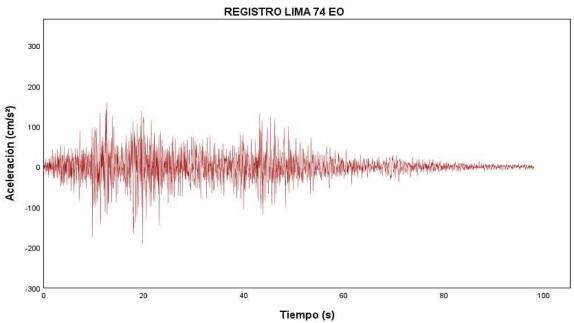

Nota: El gráfico presenta el registro sísmico del evento de Lima 1966 en la dirección este-oeste, utilizado para analizar la respuesta estructural de la edificación y verificar la conformidad con los criterios de diseño sísmico establecidos en la norma técnica E.030. Fuente: Elaboración propia.

Figura 41 *Registro Lima 1966 norte a sur*

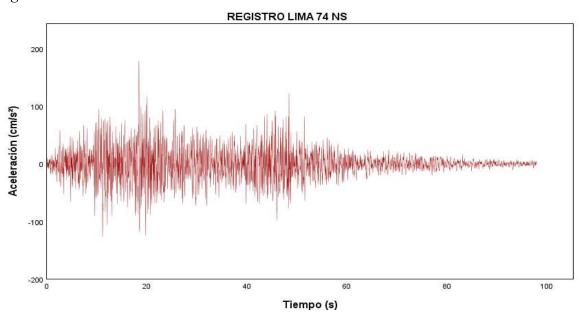
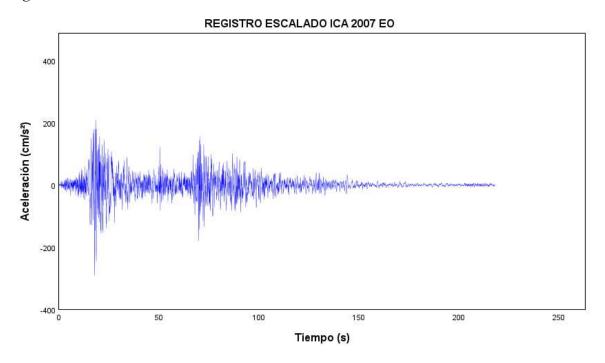

Nota: El gráfico presenta el registro sísmico del evento de Lima 1966 en la dirección norte-sur, utilizado para analizar la respuesta estructural de la edificación y verificar la conformidad con los criterios de diseño sísmico establecidos en la norma técnica E.030. Fuente: Elaboración propia.

Figura 42 *Registro Lima 1974 este a oeste*

Nota: El gráfico presenta el registro sísmico del evento de Lima 1974 en la dirección este-oeste, utilizado para analizar la respuesta estructural de la edificación y verificar la conformidad con los criterios de diseño sísmico establecidos en la norma técnica E.030. Fuente: Elaboración propia.

Figura 43 *Registro Lima 1974 norte a sur*



Nota: El gráfico presenta el registro sísmico del evento de Lima 1974 en la dirección norte-sur, utilizado para analizar la respuesta estructural de la edificación y verificar la conformidad con los criterios de diseño sísmico establecidos en la norma técnica E.030. Fuente: Elaboración propia.

Escalamiento de registro

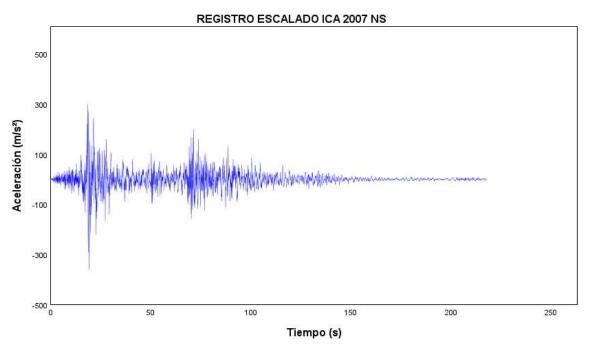

El proceso de escalamiento de los registros sísmicos es fundamental para asegurar que las aceleraciones históricas se ajusten a las condiciones de diseño establecidas por las normativas vigentes. En este contexto, el escalamiento se realiza para que los registros seleccionados, correspondientes a los terremotos de Ica 2007, Lima 1966 y 1974, se alineen con un espectro objetivo definido por un factor de comportamiento sísmico R=1. Este espectro objetivo garantiza que el análisis refleje un comportamiento elástico de la edificación, donde las fuerzas generadas por sismos no se reducen por factores de ductilidad. El uso de R=1 permite evaluar la demanda sísmica máxima que podría experimentar la estructura, proporcionando una base para comparar y validar la respuesta estructural bajo condiciones de diseño conservadoras y ajustadas a los parámetros más exigentes de la normativa E.030. Este enfoque es esencial para el dimensionamiento de componentes estructurales y la elección de dispositivos de disipación de energía, asegurando que la edificación mantenga un desempeño adecuado frente a eventos sísmicos severos.

Figura 44 *Registro escalado Ica 2007 este a oeste*


Nota: El gráfico muestra el registro sísmico escalado del sismo de Ica 2007 en la dirección este a oeste, ajustado al espectro objetivo con R=1. Este escalamiento permite adaptar el registro para que refleje adecuadamente las condiciones de diseño sísmico de acuerdo. Fuente: Elaboración propia.

Figura 45 *Registro escalado Ica 2007 norte a sur*

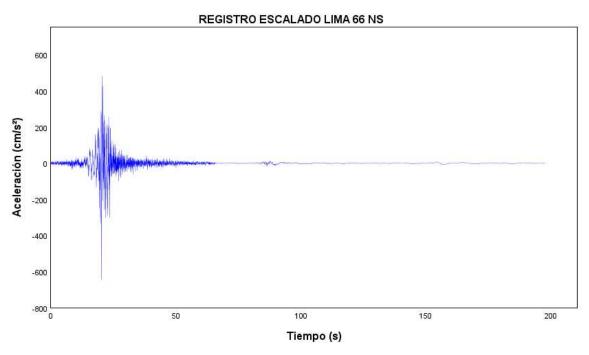

Nota: El gráfico muestra el registro sísmico escalado del sismo de Ica 2007 en la dirección norte a sur, ajustado al espectro objetivo con R=1. Este escalamiento permite adaptar el registro para que refleje adecuadamente las condiciones de diseño sísmico de acuerdo. Fuente: Elaboración propia.

Figura 46Registro escalado Lima 1966 este a oeste

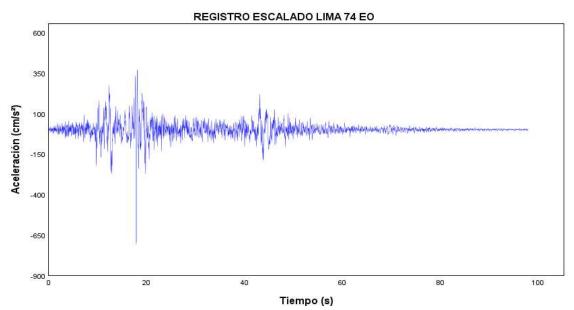

Nota: El gráfico muestra el registro sísmico escalado del sismo Lima 1966 en la dirección este a oeste, ajustado al espectro objetivo con R=1. Este escalamiento permite adaptar el registro para que refleje adecuadamente las condiciones de diseño sísmico de acuerdo. Fuente: Elaboración Propia.

Figura 47 *Registro escalado Lima 1966 norte a sur*

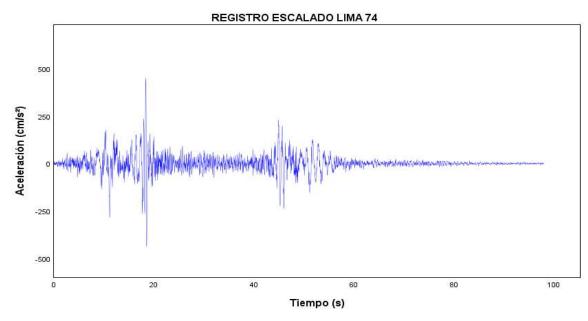

Nota: El gráfico muestra el registro sísmico escalado del sismo de Lima 1966 en la dirección norte a sur, ajustado al espectro objetivo con R=1. Este escalamiento permite adaptar el registro para que refleje adecuadamente las condiciones de diseño sísmico de acuerdo. Fuente: Elaboración propia.

Figura 48Registro escalado Lima 1974 este a oeste

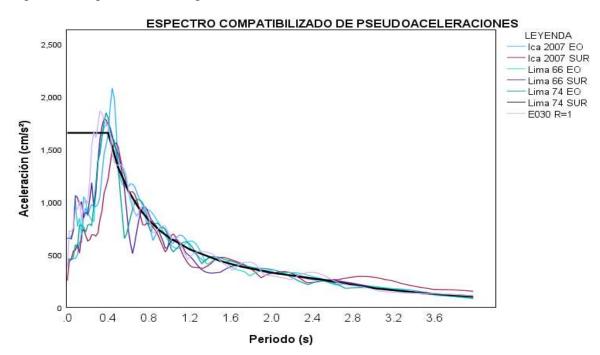

Nota: El gráfico muestra el registro sísmico escalado del sismo Lima 1974 en la dirección este a oeste, ajustado al espectro objetivo con R=1. Este escalamiento permite adaptar el registro para que refleje adecuadamente las condiciones de diseño sísmico de acuerdo. Fuente: Elaboración propia.

Figura 49 *Registro escalado Lima 1974 norte a sur*

Nota: El gráfico muestra el registro sísmico escalado del sismo de Lima 1974 en la dirección norte a sur, ajustado al espectro objetivo con R=1. Este escalamiento permite adaptar el registro para que refleje adecuadamente las condiciones de diseño sísmico de acuerdo. Fuente: Elaboración propia.

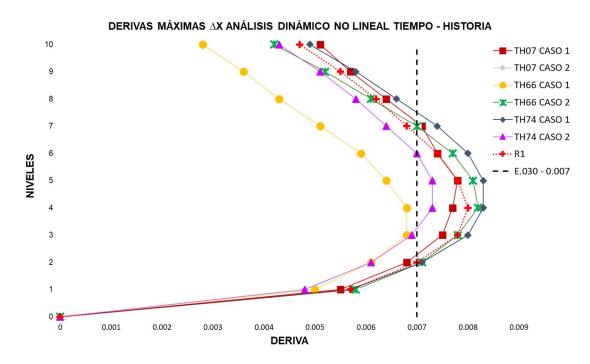
Figura 50 *Espectro compatibilizado de pseudoaceleraciones*

Nota: El gráfico compara el espectro de pseudoaceleraciones de los registros sísmicos escalados de Ica 2007, Lima 1966, Lima 1974 y el espectro normativo E030 con R=1. Este análisis verifica la compatibilidad de los registros sísmicos con el espectro objetivo, asegurando su adecuación para el diseño estructural según la normativa vigente. Fuente: Elaboración propia.

4.2.1.5.1 Derivas

La norma E.030 especifica que cuando se utilizan al menos siete registros sísmicos, las fuerzas de diseño, deformaciones y derivas deben evaluarse a partir del promedio de los valores obtenidos en todos los análisis realizados. Además, se establece que las distorsiones máximas entre pisos no deben superar 1,25 veces el valor de la deriva obtenida en el análisis modal espectral.

Aunque la norma E.030 permite un límite deriva de 0,007 para estructuras de concreto armado, se ha adoptado un enfoque más conservador para garantizar que la estructura mantenga su funcionalidad después de un sismo severo. En este sentido, se considera que el nivel de desempeño debe ser al menos "Operacional", lo que implica un límite de deriva de 0,005, según las directrices de la SEAoC Vision 2000.


Tabla 11Derivas máximas ΔX

	Análisi	s dinámico	no lineal	tiempo –	historia X				
	Espectral TH07 TH07 TH66 TH66 TH74 TH74								
Nivel	R=1	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2		
	$\Delta \mathbf{X}$	$\Delta \mathbf{X}$	$\Delta \mathbf{X}$	$\Delta \mathbf{X}$	$\Delta \mathbf{X}$	$\Delta \mathbf{X}$	$\Delta \mathbf{X}$		
10	0,0047	0,0051	0,0043	0,0028	0,0042	0,0049	0,0043		
09	0,0055	0,0057	0,0051	0,0036	0,0052	0,0058	0,0051		
08	0,0062	0,0064	0,0058	0,0043	0,0061	0,0066	0,0058		
07	0,0068	0,0071	0,0064	0,0051	0,0070	0,0074	0,0064		
06	0,0074	0,0074	0,0070	0,0059	0,0077	0,0080	0,0070		
05	0,0078	0,0078	0,0073	0,0064	0,0081	0,0083	0,0073		
04	0,0080	0,0077	0,0073	0,0068	0,0082	0,0083	0,0073		
03	0,0078	0,0075	0,0069	0,0068	0,0078	0,0080	0,0069		
02	0,0070	0,0068	0,0061	0,0061	0,0071	0,0071	0,0061		
01	0,0057	0,0055	0,0048	0,0050	0,0058	0,0057	0,0048		

Nota: La tabla presenta los resultados del análisis dinámico tiempo-historia en la dirección X, comparando las derivas obtenidas con el espectro normativo R=1 y los registros sísmicos escalados de los sismos de Ica 2007, Lima 1974 y Lima 1966 en dos escenarios (caso 1 y caso 2). En ciertos niveles, las derivas superan el límite máximo permisible de 0,007 según la norma E.030, sugiriendo posibles incumplimientos en la rigidez lateral y control de desplazamientos entre niveles. Fuente: Elaboración propia.

Figura 51

Derivas máximas ΔX con un límite según la E0.30

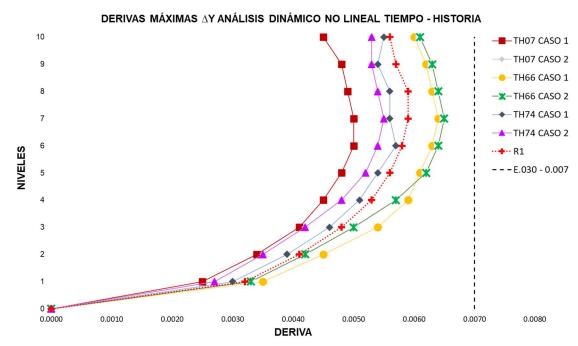

Nota: El grafico compara las derivas máximas en la dirección X, con diferentes registros sísmicos escalados y el espectro normativo R=1. Algunos valores superan el límite máximo de 0,007 definido por la norma E.030, indicando posibles incumplimientos de seguridad sismorresistente en ciertos niveles. Fuente: Elaboración propia.

Tabla 12Derivas máximas ΔY

	Análisi	s dinámico	no lineal	tiempo –	historia Y	7	
	Espectral	TH07	TH07	TH66	TH66	TH74	TH74
Nivel	R=1	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2
	$\Delta \mathbf{Y}$						
10	0,0056	0,0045	0,0053	0,0060	0,0061	0,0055	0,0053
09	0,0057	0,0048	0,0053	0,0062	0,0063	0,0054	0,0053
08	0,0059	0,0049	0,0054	0,0063	0,0064	0,0056	0,0054
07	0,0059	0,0050	0,0055	0,0064	0,0065	0,0056	0,0055
06	0,0058	0,0050	0,0054	0,0063	0,0064	0,0057	0,0054
05	0,0056	0,0048	0,0052	0,0061	0,0062	0,0054	0,0052
04	0,0053	0,0045	0,0048	0,0059	0,0057	0,0051	0,0048
03	0,0048	0,0041	0,0042	0,0054	0,0050	0,0046	0,0042
02	0,0041	0,0034	0,0035	0,0045	0,0042	0,0039	0,0035
01	0,0032	0,0025	0,0027	0,0035	0,0033	0,0030	0,0027

Nota: La tabla presenta los resultados del análisis dinámico tiempo-historia en la dirección Y, comparando las derivas obtenidas con el espectro normativo R=1 y los registros sísmicos escalados de Ica 2007, Lima 1974 y Lima 1966 en dos escenarios (caso 1 y caso 2). Todas las derivas se mantienen por debajo del límite máximo de 0,007 según la norma técnica E.030, indicando que la edificación cumple con los requisitos de seguridad sismorresistente en términos de rigidez lateral y control de desplazamientos. Fuente: Elaboración propia.

Figura 52Derivas máximas ΔY con un límite según la E0.30

Nota: El gráfico muestra el análisis de las derivas en la dirección Y, comparando los resultados con el espectro normativo R=1 y los registros sísmicos escalados. Todas las derivas se mantienen por debajo del límite permisible de 0,007 según la norma técnica E.030, indicando conformidad con los requisitos de seguridad sismorresistente. Fuente: Elaboración propia.

Tabla 13 $Relación \ del \ análisis \ dinámico \ no \ lineal \ tiempo - historia \ X \& \ el \ R=1$

	Anális	is dinámico	no lineal tier	npo – histor	ia X				
	TH07 TH07 TH66 TH66 TH74 TH74								
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2			
	$\Delta \mathbf{x}$	$\Delta \mathbf{x}$	$\Delta \mathbf{x}$	$\Delta \mathbf{x}$	$\Delta \mathbf{x}$	$\Delta \mathbf{x}$			
10	1,08	0,91	0,61	0,90	1,04	0,91			
09	1,03	0,92	0,66	0,94	1,06	0,92			
08	1,04	0,93	0,70	0,98	1,07	0,93			
07	1,04	0,94	0,74	1,02	1,08	0,94			
06	1,00	0,94	0,79	1,04	1,08	0,94			
05	0,99	0,93	0,82	1,04	1,06	0,93			
04	0,97	0,91	0,85	1,02	1,05	0,91			
03	0,97	0,89	0,87	1,01	1,03	0,89			
02	0,97	0,87	0,87	1,01	1,01	0,87			
01	0,96	0,84	0,87	1,01	0,99	0,84			

Nota: El análisis muestra que el caso más desfavorable corresponde al sismo de Lima 1974, caso 1, donde se observan las mayores relaciones entre el análisis dinámico tiempo-historia y el espectro normativo R=1. Específicamente, en los niveles 10, 9, 8 y 7, los valores alcanzan 1,08 – 1,06 – 1,07; indicando un comportamiento estructural más crítico en comparación con los otros casos evaluados. Fuente: Elaboración propia.

Tabla 14Relación del análisis dinámico no lineal tiempo – historia Y & el R=1

	Análisi	is dinámico 1	no lineal tier	npo – histor	ia Y	
	TH07	TH07	TH66	TH66	TH74	TH74
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2
	$\Delta \mathbf{x}$					
10	0,80	0,94	0,97	0,94	1,07	1,08
09	0,84	0,93	0,95	0,93	1,08	1,09
08	0,84	0,93	0,95	0,93	1,08	1,10
07	0,85	0,93	0,96	0,93	1,08	1,10
06	0,86	0,94	0,98	0,94	1,09	1,11
05	0,86	0,92	0,97	0,92	1,09	1,10
04	0,86	0,90	0,96	0,90	1,06	1,09
03	0,85	0,89	0,96	0,89	1,03	1,04
02	0,83	0,86	0,94	0,86	1,00	1,03
01	0,77	0,82	0,92	0,82	0,99	1,01

Nota: El análisis muestra que el caso más desfavorable corresponde al sismo de Lima 1966, caso 2, donde se observan las mayores relaciones entre el análisis dinámico tiempo-historia y el espectro normativo R=1. Específicamente, en los niveles 6, 7 y 8, los valores alcanzan 1,11 - 1,10 y 1,10 respectivamente, indicando un comportamiento estructural más crítico en comparación con los otros casos evaluados. Fuente: Elaboración propia.

4.2.1.5.2 Desplazamientos máximos

Tabla 15Desplazamientos máximos en X de la estructura

	Desplazam	ientos del a	nálisis diná	mico no line	eal tiempo –	historia X	
3.7	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	dx (cm)
	dx (m)	dx (m)	dx (m)	dx (m)	dx (m)	dx (m)	, ,
10	0,2533	0,2365	0,2745	0,2243	0,2170	0,2650	0,2451
09	0,2344	0,2197	0,2550	0,2088	0,2041	0,2477	0,2283
08	0,2126	0,2005	0,2326	0,1908	0,1891	0,2275	0,2088
07	0,1888	0,1787	0,2071	0,1703	0,1715	0,2041	0,1867
06	0,1627	0,1544	0,1789	0,1472	0,1509	0,1773	0,1619
05	0,1350	0,1280	0,1484	0,1222	0,1275	0,1480	0,1349
04	0,1066	0,1003	0,1166	0,0961	0,1018	0,1168	0,1064
03	0,0779	0,0725	0,0847	0,0697	0,0748	0,0853	0,0775
02	0,0503	0,0462	0,0543	0,0445	0,0482	0,0552	0,0498
01	0,0253	0,0230	0,0272	0,0222	0,0242	0,0280	0,0250

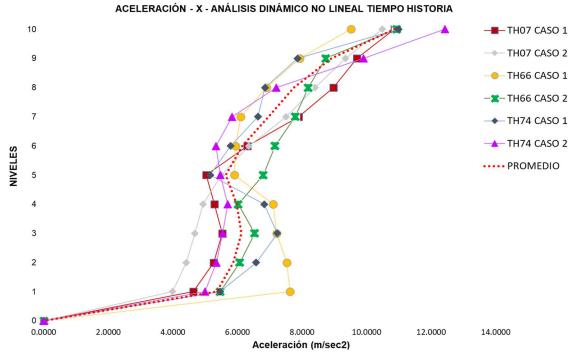
Nota: La tabla presenta los desplazamientos en la dirección X para una estructura sin disipadores, obtenidos del análisis dinámico no lineal en el tiempo. Los promedios de desplazamiento por nivel, en la última columna, ofrecen una visión del comportamiento estructural ante sismos, lo que es esencial para evaluar la necesidad de implementar sistemas de disipación de energía. Fuente: Elaboración propia.

Figura 53Desplazamientos máximos en X

Nota: La figura muestra los desplazamientos máximos en la dirección X para diferentes historias sísmicas, mostrando cómo varían a lo largo de los niveles de la estructura. La línea de promedio proporciona una visión general del comportamiento estructural bajo cargas sísmicas, crucial para evaluar la estabilidad y seguridad de la edificación. Fuente: Elaboración propia.

4.2.1.5.3 Aceleración

 Tabla 16


 Aceleraciones máximas de la estructura

-	Acelerac	ciones del a	nálisis diná	mico no lin	eal tiempo	– historia 🛚	X
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	
	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)
10	8,1995	8,1335	9,1255	8,4744	6,5351	7,2954	7,9606
09	7,6448	7,4536	8,8433	7,0890	5,8123	6,4272	7,2117
08	6,9393	6,7546	8,8855	6,6078	5,6530	5,8132	6,7756
07	5,9544	5,9463	8,3377	6,0791	5,5515	5,4152	6,2140
06	5,3006	5,3864	7,2641	5,5764	5,4034	4,8996	5,6384
05	5,7344	5,1324	6,1410	4,9765	4,6202	4,2862	5,1485
04	5,7889	4,7025	5,2931	4,8287	3,8339	3,3906	4,6396
03	5,4192	4,0227	4,7654	5,0083	3,6456	3,4281	4,3816
02	4,8076	3,1264	5,1712	4,5486	3,2172	4,1860	4,1762
01	4,1617	3,0164	5,5194	4,3275	3,3672	4,5116	4,1506

Nota: La tabla presenta las aceleraciones máximas de la estructura en distintos niveles, basado en un análisis dinámico no lineal tiempo-historia X. Se observa que las aceleraciones disminuyen desde los niveles superiores hacia los inferiores, y el promedio por nivel ofrece una visión general del comportamiento estructural. Fuente: Elaboración propia.

Figura 54

Aceleraciones (m/sec2) en X de la estructura

Nota: La figura muestra las aceleraciones máximas en la dirección X para diferentes niveles de la estructura, se comparan los resultados de varias historias sísmicas y sus casos correspondientes, con una línea de puntos que representa el promedio de las aceleraciones. Fuente: Elaboración propia.

4.2.1.5.4 Fuerza cortante

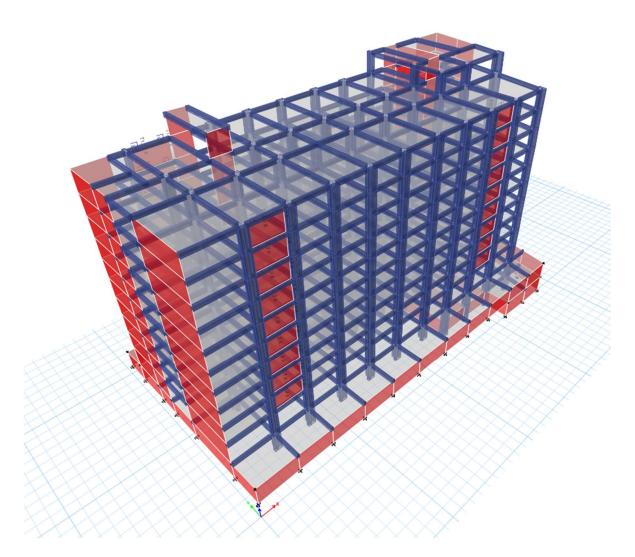
Tabla 17Fuerza cortante Vx de la estructura

	Fuerza co	ortante del a	nálisis din	ámico no li	neal tiemp	o – historia	X
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	
	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(Tonf)
10	1948,56	1787,47	2033,15	2266,64	1698,89	2154,26	1981,50
09	3735,72	3453,84	3388,44	4025,32	3065,79	3697,58	3561,11
08	5369,35	4921,56	4276,72	5290,83	4136,14	4860,84	4809,24
07	6818,71	6233,98	5091,02	5954,92	5003,77	6081,51	5863,98
06	7986,65	7387,05	6090,99	6067,65	5844,28	7269,39	6774,33
05	8765,91	8291,20	6963,86	6521,20	6699,57	8366,85	7601,43
04	9159,08	8942,16	7610,24	7237,09	7605,96	9173,42	8287,99
03	9225,99	9453,41	8164,53	7805,07	8255,05	9777,14	8780,20
02	9007,44	9930,25	8670,59	8220,51	8488,73	10193,49	9085,17
01	8836,08	10285,39	9025,19	8475,73	8324,59	10416,33	9227,22

Nota: La tabla presenta las fuerzas cortantes en la dirección Vx para una estructura sin disipadores, obtenidos del análisis dinámico no lineal tiempo-historia X. Los promedios permiten evaluar la demanda sísmica por nivel y facilitarán comparaciones o decisiones de diseño para mejorar la respuesta sísmica de la estructura. Fuente: Elaboración propia.

4.2.2 Implementación de sistemas de protección sísmica

La protección sísmica de edificaciones representa un avance crucial en la ingeniería estructural, con el objetivo de mitigar los efectos destructivos de los movimientos sísmicos. Los sistemas de protección sísmica, como los disipadores de energía y los dispositivos de control de movimiento, han mostrado ser tecnologías eficaces para optimizar el comportamiento dinámico de las estructuras bajo la influencia de cargas sísmicas. Al integrar estos sistemas en el diseño estructural, se logra una considerable reducción de las deformaciones, preservando la integridad y funcionalidad de la construcción tras un evento sísmico.


4.2.2.1 Shear Link Bozzo

El disipador Shear Link Bozzo (SLB) es un dispositivo de control pasivo diseñado para mejorar la capacidad de disipación de energía en estructuras durante sismos, convirtiendo la energía de deformación en calor a través de su mecanismo de deformación plástica. Este proceso no solo reduce significativamente las vibraciones y desplazamientos, sino que incrementa la rigidez estructural, lo que mejora la estabilidad lateral y la resistencia sísmica del edificio. Este aumento de rigidez permite que la estructura soporte mayores esfuerzos sin comprometer su integridad, asegurando su funcionalidad tras un evento sísmico.

Además, los disipadores SLB se adaptan eficientemente a diferentes frecuencias y niveles de energía, proporcionando una solución versátil y económica para una amplia gama de edificaciones. Su implementación no solo optimiza la respuesta dinámica de la estructura, sino que, debido al incremento de rigidez, también reduce la necesidad de reforzamientos adicionales, contribuyendo a una mayor protección y durabilidad del edificio.

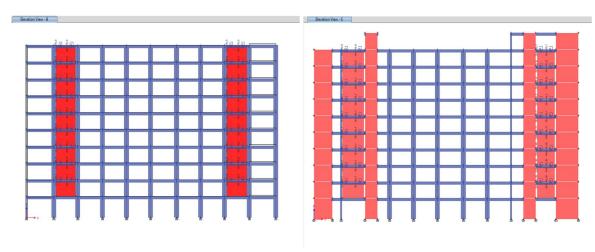

El uso del disipador Shear Link Bozzo (SLB) no solo mejora la capacidad de una estructura para disipar la energía sísmica, sino que también ofrece una solución integrada que reduce costos y refuerza la seguridad sin comprometer el diseño arquitectónico. Al actuar como un amortiguador adicional y aumentar la rigidez de la estructura, el SLB incrementa la durabilidad y la vida útil del edificio, disminuyendo los daños potenciales y asegurando que la estructura mantenga su funcionalidad después de un sismo. Esto resulta en un enfoque efectivo y eficiente para la protección sísmica en una amplia variedad de edificaciones.

Figura 55Vista isométrica del edificio incorporando disipadores de Shear Link Bozzo

Nota: En la vista isométrica se aprecian las ubicaciones de los disipadores Shear Link Bozzo en la estructura. Se modelaron un total de 72 disipadores, distribuidos uniformemente con 8 unidades por cada nivel. La implementación de estos dispositivos tiene como objetivo optimizar el comportamiento sísmico de la edificación al incrementar la capacidad de disipación de energía. Fuente: Elaboración propia.

Figura 56Vista en elevación de los pórticos en el eje B y E con disipadores Shear Link Bozzo

Nota: La vista en elevación muestra los pórticos en el eje B y E de la estructura con la implementación de disipadores Shear Link Bozzo, con ocho disipadores colocados en cada nivel. Estos elementos están estratégicamente ubicados para mejorar la disipación de energía sísmica y optimizar la respuesta global de la estructura. Fuente: Elaboración propia.

En el diseño preliminar, se optó por instalar una serie de disipadores de tercera generación en el eje X, identificado como el lado más crítico de la estructura. Para seleccionar el disipador óptimo en cada nivel, se realizaron un promedio de seis iteraciones, lo que permitió ajustar las especificaciones técnicas de los dispositivos. Este proceso aseguró que la relación entre la demanda sísmica y la capacidad de los disipadores se mantuviera por debajo del umbral de 1.50, garantizando un desempeño estructural eficiente y seguro frente a eventos sísmicos.

Tabla 18Primera iteración en la selección de los disipadores SLB4 del nivel 10

P	rimera iterac	ción	Inicio			
Nivel	Link	Primera iteración	V(kN)	Disipador	Fy (KN)	
10	K12	SLB4 10_5	275,07	SLB4 15_6	195,09	
10	K13	SLB4 10 ⁻⁵	273,88	SLB4 15 6	195,09	
10	K14	SLB4 10 ⁻⁵	200,11	SLB4 10 5	151,79	
10	K15	SLB4 10 ⁻⁵	197,17	SLB4 10 ⁻ 5	151,79	
10	K20	SLB4 10 ⁻⁵	126,15	SLB4 10 ⁻⁵	151,79	
10	K21	SLB4 10 ⁻⁵	91,84	SLB4 10 ⁻ 5	151,79	
10	K22	SLB4 10 ⁻ 5	72,46	SLB4 10 ⁻ 5	151,79	
10	K26	SLB4 10_5	71,54	SLB4 10_5	151,79	

Tabla 19Primera iteración en la selección de los disipadores SLB4 del nivel 9

P	rimera iterac	ión	Inicio			
Nivel	Link	Primera iteración	V (kN)	Disipador	Fy (KN)	
09	K16	SLB4 10 5	326,67	SLB4 20 6	230,93	
09	K17	SLB4 10 ⁻⁵	325,41	SLB4 20 ⁻ 6	230,93	
09	K18	SLB4 10 ⁻⁵	226,17	SLB4 10 ⁻⁶	160,54	
09	K23	SLB4 10_5	223,10	SLB4 10_6	160,54	
09	K27	SLB4 10_5	160,66	SLB4 10_5	151,79	
09	K28	SLB4 10 5	116,73	SLB4 10 5	151,79	
09	K29	SLB4 10 ⁻⁵	100,43	SLB4 10 ⁻⁵	151,79	
09	K30	SLB4 10_5	99,37	SLB4 10_5	151,79	

Tabla 20Primera iteración en la selección de los disipadores SLB4 del nivel 8

P	rimera iterac	rión	Inicio				
Nivel	Link	Primera iteración	V(kN)	Disipador	Fy (KN)		
08	K24	SLB4 10_5	385,84	SLB4 25_6	278,74		
08	K25	SLB4 10 5	384,58	SLB4 25 6	278,74		
08	K31	SLB4 10 ⁻⁵	201,91	SLB4 10 ⁻ 5	151,79		
08	K32	SLB4 10_5	146,45	SLB4 10_5	151,79		
08	K33	SLB4 10 5	139,83	SLB4 10 5	151,79		
08	K34	SLB4 10 ⁻⁵	140,20	SLB4 10 ⁻ 5	151,79		
08	K55	SLB4 10 ⁻ 5	255,57	SLB4 15 5	177,92		
08	K56	SLB4 10 ⁻ 5	252,46	SLB4 15 5	177,92		

Fuente: Elaboración propia.

Tabla 21Primera iteración en la selección de los disipadores SLB4 del nivel 7

P	rimera iterac	ión	Inicio			
Nivel	Link	Primera iteración	V (kN)	Disipador	Fy (KN)	
07	K35	SLB4 10 5	247,26	SLB4 15 5	177,92	
07	K36	SLB4 10 ⁻ 5	179,13	SLB4 10 ⁻⁵	151,79	
07	K37	SLB4 10 ⁻⁵	185,31	SLB4 10 ⁻⁵	151,79	
07	K38	SLB4 10 ⁻ 5	185,77	SLB4 10 ⁻⁵	151,79	
07	K57	SLB4 10 ⁻ 5	444,86	SLB4 25 ⁻ 8	327,73	
07	K58	SLB4 10 ⁻ 5	443,60	SLB4 25 ⁻ 8	327,73	
07	K59	SLB4 10 ⁻ 5	284,79	SLB4 15 ⁻ 7	210,76	
07	K60	SLB4 10_5	281,64	SLB4 15_6	195,09	

Tabla 22Primera iteración en la selección de los disipadores SLB4 del nivel 6

P	rimera iterac	ción	Inicio			
Nivel	Link	Primera iteración	V (kN)	Disipador	Fy (KN)	
06	K39	SLB4 10_5	292,40	SLB4 15_7	210,76	
06	K40	SLB4 10_5	211,66	SLB4 10_5	151,79	
06	K41	SLB4 10_5	232,33	SLB4 10_6	160,54	
06	K42	SLB4 10_5	231,46	SLB4 10_6	160,54	
06	K61	SLB4 10_5	496,98	SLB4 30_7	358,28	
06	K62	SLB4 10_5	495,73	SLB4 30_7	358,28	
06	K63	SLB4 10_5	310,14	SLB4 15_7	210,76	
06	K64	SLB4 10 ⁻⁵	306,96	SLB4 15 ⁷	210,76	

Tabla 23Primera iteración en la selección de los disipadores SLB4 del nivel 5

P	Primera iteración			Inicio		
Nivel	Link	Primera iteración	V (kN)	Disipador	Fy (KN)	
05	K43	SLB4 10_5	334,21	SLB4 20_6	230,93	
05	K44	SLB4 10_5	241,78	SLB4 15_5	177,92	
05	K45	SLB4 10_5	278,25	SLB4 15_6	195,09	
05	K46	SLB4 10_5	277,21	SLB4 15_6	195,09	
05	K65	SLB4 10_5	535,99	SLB4 30_8	390,28	
05	K66	SLB4 10_5	534,74	SLB4 30_8	390,28	
05	K67	SLB4 10 5	328,54	SLB4 20 6	230,93	
05	K68	SLB4 10_5	325,34	SLB4 20_6	230,93	

Fuente: Elaboración propia.

Tabla 24Primera iteración en la selección de los disipadores SLB4 del nivel 4

P	Primera iteración			Inicio		
Nivel	Link	Primera iteración	V (kN)	Disipador	Fy (KN)	
04	K47	SLB4 10_5	367,70	SLB4 20_7	248,98	
04	K48	SLB4 10 ⁻⁵	265,90	SLB4 15 6	195,09	
04	K49	SLB4 10 ⁻⁵	318,93	SLB4 20 ⁻ 6	230,93	
04	K50	SLB4 10 ⁻⁵	317,90	SLB4 20 ⁻ 6	230,93	
04	K69	SLB4 10 ⁻⁵	553,45	SLB4 30 ⁻ 8	390,28	
04	K70	SLB4 10 ⁻⁵	552,20	SLB4 30 ⁻ 8	390,28	
04	K71	SLB4 10 ⁻ 5	336,66	$SLB4\ 20^{-7}$	248,98	
04	K72	SLB4 10 ⁻ 5	333,47	SLB4 20 ⁻ 6	230,93	

Tabla 25Primera iteración en la selección de los disipadores SLB4 del nivel 3

P	Primera iteración			Inicio		
Nivel	Link	Primera iteración	V (kN)	Disipador	Fy (KN)	
03	K51	SLB4 10_5	385,17	SLB4 25_6	278,74	
03	K52	SLB4 10_5	278,47	SLB4 15_6	195,09	
03	K53	SLB4 10 5	347,14	$SLB4\ 20^{-7}$	248,98	
03	K54	SLB4 10_5	346,10	SLB4 20_7	248,98	
03	K73	SLB4 10_5	533,92	SLB4 30_8	390,28	
03	K74	SLB4 10_5	532,68	SLB4 30_8	390,28	
03	K75	SLB4 10_5	327,18	SLB4 20_6	230,93	
03	K76	SLB4 10_5	324,06	SLB4 20_6	230,93	

Tabla 26Primera iteración en la selección de los disipadores SLB4 del nivel 2

P	Primera iteración			Inicio		
Nivel	Link	Primera iteración	V (kN)	Disipador	Fy (KN)	
02	K1	SLB4 10_5	359,56	SLB4 20_7	248,98	
02	K10	SLB4 10_5	290,06	SLB4 15_7	210,76	
02	K11	SLB4 10_5	286,90	SLB4 15_7	210,76	
02	K19	SLB4 10_5	337,42	SLB4 20_7	248,98	
02	K2	SLB4 10_5	259,95	SLB4 15_5	177,92	
02	K7	SLB4 10_5	449,82	SLB4 25_8	327,73	
02	K8	SLB4 10_5	448,59	SLB4 25_8	327,73	
02	K9	SLB4 10_5	338,45	SLB4 20_7	248,98	

Fuente: Elaboración propia.

En la sexta iteración del diseño, se logró optimizar completamente la selección de los dispositivos Shear Link Bozzo (SLB). Durante esta fase final, se verificó que la configuración propuesta cumpliera con todos los requisitos de desempeño sísmico, manteniendo la relación demanda-capacidad consistentemente por debajo de 1.50 en cada nivel. Con esta iteración, se confirmó que los disipadores seleccionados no solo eran adecuados para las condiciones más críticas del eje X, sino que también proporcionaban una protección estructural eficiente y equilibrada en toda la edificación, cumpliendo con las normativas y asegurando un comportamiento sísmico óptimo.

Tabla 27Sexta iteración en la selección de los disipadores SLB4 del nivel 10

	Etabs			Sexta iteración		
Nivel	Propiedad	Fy (KN)	V (kN)	D/C	Verificación	
10	SLB4 20_7	248,979	288,36	1,16	OK	
10	SLB4 20_7	248,979	286,52	1,15	OK	
10	SLB4 10_6	160,536	180,85	1,13	OK	
10	SLB4 10_6	160,536	177,79	1,11	OK	
10	SLB4 10_5	151,792	114,57	0,75	OK	
10	SLB4 10_5	151,792	83,48	0,55	OK	
10	SLB4 10_5	151,792	72,56	0,48	OK	
10	SLB4 10_5	151,792	71,64	0,47	OK	

Tabla 28Sexta iteración en la selección de los disipadores SLB4 del nivel 9

	Etabs			Sexta iteración		
Nivel	Propiedad	Fy (KN)	V (kN)	D/C	Verificación	
09	SLB4 25_8	327,733	399,10	1,22	OK	
09	SLB4 25_8	327,733	396,65	1,21	OK	
09	SLB4 15_6	195,094	224,83	1,15	OK	
09	SLB4 15_6	195,094	221,24	1,13	OK	
09	SLB4 10_5	151,792	138,29	0,91	OK	
09	SLB4 10_5	151,792	100,61	0,66	OK	
09	SLB4 10_5	151,792	91,76	0,60	OK	
09	SLB4 10_5	151,792	90,69	0,60	OK	

Fuente: Elaboración propia.

Tabla 29Sexta iteración en la selección de los disipadores SLB4 del nivel 8

	Etabs			Sexta iteración		
Nivel	Propiedad	Fy (KN)	V (kN)	D/C	Verificación	
08	SLB4 30_9	420,37	522,21	1,24	OK	
08	SLB4 30_9	420,37	519,33	1,24	OK	
08	SLB4 15_7	210,756	215,63	1,02	OK	
08	SLB4 15_7	210,756	142,23	0,67	OK	
08	SLB4 10_5	151,792	119,32	0,79	OK	
08	SLB4 10_5	151,792	120,10	0,79	OK	
08	SLB4 15_7	210,756	258,42	1,23	OK	
08	SLB4 15 7	210,756	254,63	1,21	OK	

Tabla 30Sexta iteración en la selección de los disipadores SLB4 del nivel 7

	Etabs			Sexta iteración		
Nivel	Propiedad	Fy (KN)	V (kN)	D/C	Verificación	
07	SLB4 25_6	278,739	321,09	1,15	OK	
07	SLB4 10_5	151,792	134,10	0,88	OK	
07	SLB4 10_5	151,792	150,61	0,99	OK	
07	SLB4 10_5	151,792	151,39	1,00	OK	
07	SLB4 40_7	464,678	623,14	1,34	OK	
07	SLB4 40_7	464,678	620,11	1,33	OK	
07	SLB4 20_7	248,979	305,79	1,23	OK	
07	SLB4 20_7	248,979	301,61	1,21	OK	

Tabla 31Sexta iteración en la selección de los disipadores SLB4 del nivel 6

	Etabs			Sexta iteración		
Nivel	Propiedad	Fy (KN)	V (kN)	D/C	Verificación	
06	SLB4 30_7	358,28	435,36	1,22	OK	
06	SLB4 10_5	151,792	149,61	0,99	OK	
06	SLB4 15_7	210,756	229,83	1,09	OK	
06	SLB4 15_7	210,756	230,91	1,10	OK	
06	SLB4 40_7	464,678	696,98	1,50	OK	
06	SLB4 40_7	464,678	693,96	1,49	OK	
06	SLB4 20_7	248,979	327,42	1,32	OK	
06	SLB4 20_7	248,979	323,20	1,30	OK	

Fuente: Elaboración propia.

Tabla 32Sexta iteración en la selección de los disipadores SLB4 del nivel 5

	Etabs			Sexta iteración		
Nivel	Propiedad	Fy (KN)	V (kN)	D/C	Verificación	
05	SLB4 25_7	304,308	445,96	1,47	OK	
05	SLB4 10_5	151,792	172,75	1,14	OK	
05	SLB4 25_6	278,739	320,48	1,15	OK	
05	SLB4 25_6	278,739	319,57	1,15	OK	
05	SLB4 40_11	643,06	828,90	1,29	OK	
05	SLB4 40 11	643,06	825,33	1,28	OK	
05	SLB4 25 7	304,308	373,23	1,23	OK	
05	SLB4 25 ⁻ 7	304,308	368,58	1,21	OK	

Tabla 33Sexta iteración en la selección de los disipadores SLB4 del nivel 4

	Etabs		Sexta iteración				
Nivel	Propiedad	Fy (KN)	V (kN)	D/C	Verificación		
04	SLB4 30_7	358,28	529,72	1,48	OK		
04	SLB4 20_7	248,979	246,93	0,99	OK		
04	SLB4 25_7	304,308	386,34	1,27	OK		
04	SLB4 25_7	304,308	384,33	1,26	OK		
04	SLB4 40_10	601,315	851,46	1,42	OK		
04	SLB4 40_10	601,315	848,01	1,41	OK		
04	SLB4 25_7	304,308	382,09	1,26	OK		
04	SLB4 25_7	304,308	378,25	1,24	OK		

Fuente: Elaboración propia.

Tabla 34Sexta iteración en la selección de los disipadores SLB4 del nivel 3

	Etabs		Sexta iteración				
Nivel	Propiedad	Fy (KN)	V (kN)	D/C	Verificación		
03	SLB4 30_9	420,37	611,67	1,46	OK		
03	SLB4 25_8	327,733	292,84	0,89	OK		
03	SLB4 30_9	420,37	504,97	1,20	OK		
03	SLB4 30_9	420,37	502,42	1,20	OK		
03	SLB4 40_10	601,315	840,61	1,40	OK		
03	SLB4 40_10	601,315	837,17	1,39	OK		
03	SLB4 25_7	304,308	375,93	1,24	OK		
03	SLB4 25_7	304,308	372,49	1,22	OK		

Fuente: Elaboración propia.

Tabla 35Sexta iteración en la selección de los disipadores SLB4 del nivel 2

	Etabs		Sexta iteración				
Nivel	Propiedad	Fy (KN)	V (kN)	D/C	Verificación		
02	SLB4 40_7	464,678	627,13	1,35	OK		
02	SLB4 25 ⁻⁷	304,308	347,22	1,14	OK		
02	SLB4 25_7	304,308	343,26	1,13	OK		
02	$SLB4 40^{-7}$	464,678	540,00	1,16	OK		
02	SLB4 25 8	327,733	282,94	0,86	OK		
02	SLB4 40 10	601,315	740,09	1,23	OK		
02	SLB4 40 ⁻ 10	601,315	736,69	1,23	OK		
02	$SLB4 \overline{40} 7$	464,678	542,69	1,17	OK		

Fuente: Elaboración propia.

4.2.2.1.1 Modos de vibración

Tabla 36 *Modos de vibración sin y con disipadores Shear Link Bozzo*

Modo	Sin disipadores Periodo (s)	Con disipadores Periodo (s)	Reducción (%)
1	1,063	0,777	26,90
2	0,784	0,714	8,93
3	0,568	0,520	8,45

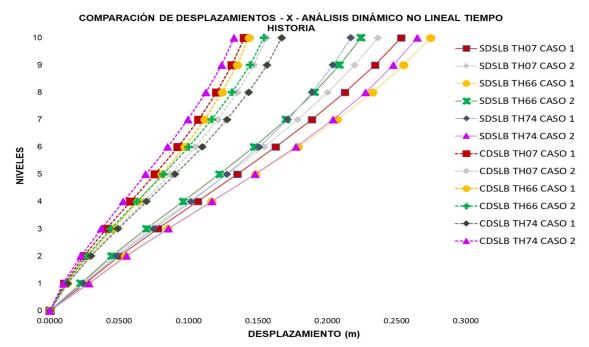
Nota: La tabla muestra la comparación de los modos de vibración de la estructura sin y con el uso de disipadores Shear Link Bozzo (SLB). Se observa una reducción significativa en los periodos de vibración cuando se incorporan los disipadores SLB, especialmente en el primer modo. Esta reducción indica un aumento en la rigidez de la estructura, lo que contribuye a una mayor estabilidad y un mejor desempeño sísmico al acortar los tiempos de respuesta ante eventos sísmicos. Fuente: Elaboración propia.

4.2.2.1.2 Desplazamientos máximos

Tabla 37Desplazamientos máximos en X de la estructura

Desplaza	mientos del	análisis di	inámico no	lineal tien	npo — histo	ria X – sir	ı disipador
_	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	dx (m)
	dx (m)	ux (III)					
10	0,2533	0,2365	0,2745	0,2243	0,2170	0,2650	0,2451
09	0,2344	0,2197	0,2550	0,2088	0,2041	0,2477	0,2283
08	0,2126	0,2005	0,2326	0,1908	0,1891	0,2275	0,2088
07	0,1888	0,1787	0,2071	0,1703	0,1715	0,2041	0,1867
06	0,1627	0,1544	0,1789	0,1472	0,1509	0,1773	0,1619
05	0,1350	0,1280	0,1484	0,1222	0,1275	0,1480	0,1349
04	0,1066	0,1003	0,1166	0,0961	0,1018	0,1168	0,1064
03	0,0779	0,0725	0,0847	0,0697	0,0748	0,0853	0,0775
02	0,0503	0,0462	0,0543	0,0445	0,0482	0,0552	0,0498
01	0,0253	0,0230	0,0272	0,0222	0,0242	0,0280	0,0250

Nota: La tabla presenta los desplazamientos en la dirección X para una estructura sin disipadores, obtenidos del análisis dinámico no lineal en el tiempo. Los promedios de desplazamiento por nivel, en la última columna, ofrecen una visión del comportamiento estructural ante sismos, lo que es esencial para evaluar la necesidad de implementar sistemas de disipación de energía. Fuente: Elaboración propia.


Tabla 38Desplazamientos máximos en X de la estructura con disipadores SLB

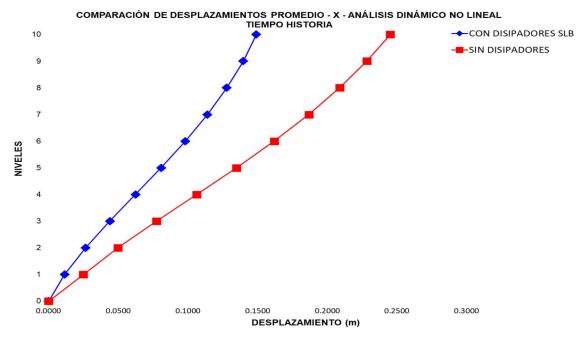
Desplaz	Desplazamientos dx (m) del análisis dinámico no lineal tiempo – historia X – con							
			SI	LB				
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio	
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	dx (cm)	
	dx (cm)	dx (cm)	dx (cm)	dx (cm)	dx (cm)	dx (cm)	ux (cm)	
10	0,1403	0,1560	0,1435	0,1544	0,1670	0,1329	0,1490	
09	0,1312	0,1469	0,1350	0,1443	0,1567	0,1239	0,1397	
08	0,1202	0,1351	0,1242	0,1315	0,1433	0,1126	0,1278	
07	0,1072	0,1211	0,1116	0,1167	0,1277	0,0995	0,1140	
06	0,0923	0,1050	0,0971	0,1000	0,1099	0,0849	0,0982	
05	0,0757	0,0868	0,0808	0,0816	0,0902	0,0691	0,0807	
04	0,0582	0,0676	0,0634	0,0627	0,0697	0,0530	0,0624	
03	0,0408	0,0480	0,0454	0,0439	0,0490	0,0371	0,0440	
02	0,0245	0,0293	0,0278	0,0264	0,0296	0,0223	0,0266	
01	0,0105	0,0127	0,0121	0,0113	0,0128	0,0096	0,0115	

Nota: La tabla muestra los desplazamientos en la dirección X para una estructura con disipadores Shear Link Bozzo, evidenciando una reducción significativa en todos los niveles bajo diferentes condiciones sísmicas. Los promedios indican que los disipadores mejoran la estabilidad estructural, reduciendo el riesgo de daño y asegurando la funcionalidad post-sismo. Fuente: Elaboración propia.

Figura 57

Comparación de desplazamientos máximos en X sin y con disipadores SLB

Nota: La figura compara los desplazamientos en la dirección X. Las líneas punteadas representan los desplazamientos con disipadores SLB, mientras que las líneas continuas muestran los desplazamientos sin disipadores. Se observa que los desplazamientos con disipadores son significativamente menores, lo que evidencia la efectividad de los SLB en reducir las deformaciones y mejorar la estabilidad estructural frente a sismos. Fuente: Elaboración propia.


Tabla 39Resumen de desplazamientos promedio en X de la estructura sin y con disipadores SLB

Nivel	Sin disipadores dx (m)	Con disipadores Shear Link Bozzo dx (m)	Reducción (%)
10	0,2451	0,1490	39
09	0,2283	0,1397	39
08	0,2088	0,1278	39
07	0,1867	0,1140	39
06	0,1619	0,0982	39
05	0,1349	0,0807	40
04	0,1064	0,0624	41
03	0,0775	0,0440	43
02	0,0498	0,0266	46
01	0,0250	0,0115	54

Nota: La tabla presenta un resumen comparativo de las derivas promedio en una estructura con y sin disipadores Shear Link Bozzo. Se observa que la implementación de los disipadores reduce significativamente las derivas en todos los niveles, con reducciones que varían entre el 39% y el 54%. Este análisis demuestra la eficacia de los disipadores Shear Link Bozzo en mejorar el comportamiento sísmico de la estructura, minimizando las deformaciones y aumentando la seguridad estructural. Fuente: Elaboración propia.

Figura 58

Comparación de desplazamientos promedio en X sin y con disipadores SLB

Nota: La figura compara los desplazamientos promedio en la dirección X de la estructura con y sin el uso de disipadores Shear Link Bozzo (SLB). Los resultados muestran que la incorporación de los disipadores SLB reduce significativamente los desplazamientos a lo largo de los niveles, mejorando la rigidez y el control de la estructura frente a cargas sísmicas. Esto evidencia la efectividad de los disipadores SLB en minimizar las deformaciones, contribuyendo a una mayor estabilidad y seguridad de la edificación durante eventos sísmicos. Fuente: Elaboración propia.

4.2.2.1.3 Derivas

Tabla 40Derivas máximas ΔX de la estructura sin disipadores

Derivas	s ∆x del aná	ilisis dinán	nico no line	eal tiempo	– historia	X – sin dis	ipadores
Nivel	TH07 Caso 1 Δx	TH07 Caso 2 Δx	TH66 Caso 1 ∆x	TH66 Caso 2 Δx	TH74 Caso 1 Δx	TH74 Caso 2 Δx	Promedio Δx
10	0,0051	0,0043	0,0028	0,0042	0,0049	0,0043	0,0043
09	0,0057	0,0051	0,0036	0,0052	0,0058	0,0051	0,0051
08	0,0064	0,0058	0,0043	0,0061	0,0066	0,0058	0,0058
07	0,0071	0,0064	0,0051	0,0070	0,0074	0,0064	0,0066
06	0,0074	0,0070	0,0059	0,0077	0,0080	0,0070	0,0072
05	0,0078	0,0073	0,0064	0,0081	0,0083	0,0073	0,0075
04	0,0077	0,0073	0,0068	0,0082	0,0083	0,0073	0,0076
03	0,0075	0,0069	0,0068	0,0078	0,0080	0,0069	0,0073
02	0,0068	0,0061	0,0061	0,0071	0,0071	0,0061	0,0066
01	0,0055	0,0048	0,0050	0,0058	0,0057	0,0048	0,0053

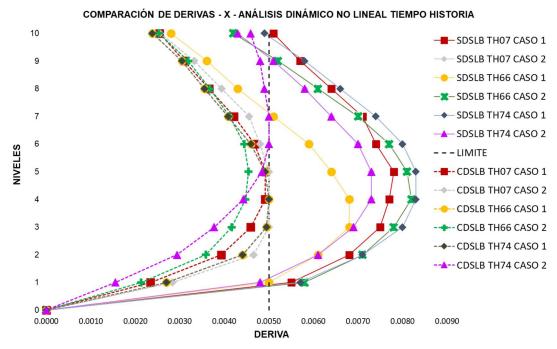

Nota: La tabla muestra los valores reflejan las derivas en cada nivel de la estructura para diversos registros sísmicos, proporcionando una visión del comportamiento estructural sin disipadores. El promedio final permite comparar la eficacia sin disipadores y posteriormente con disipadores al sistema estructural. Fuente: Elaboración propia.

Tabla 41Derivas máximas ΔX de la estructura con disipadores Shear Link Bozzo

D	Derivas Δx del análisis dinámico no lineal tiempo – historia X – SLB								
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio		
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2			
	$\Delta \mathbf{x}$	$\Delta \mathbf{x}$	$\Delta \mathbf{x}$	$\Delta \mathbf{x}$	$\Delta \mathbf{x}$	$\Delta \mathbf{x}$	$\Delta \mathbf{x}$		
10	0,0025	0,0026	0,0024	0,0025	0,0024	0,0046	0,0028		
09	0,0031	0,0033	0,0030	0,0032	0,0030	0,0048	0,0034		
08	0,0037	0,0039	0,0036	0,0037	0,0036	0,0049	0,0039		
07	0,0042	0,0046	0,0041	0,0041	0,0041	0,0050	0,0043		
06	0,0047	0,0048	0,0046	0,0044	0,0046	0,0050	0,0047		
05	0,0049	0,0050	0,0049	0,0045	0,0049	0,0048	0,0049		
04	0,0049	0,0050	0,0050	0,0045	0,0050	0,0044	0,0048		
03	0,0046	0,0050	0,0049	0,0042	0,0049	0,0038	0,0046		
02	0,0039	0,0047	0,0044	0,0036	0,0044	0,0029	0,0040		
01	0,0023	0,0028	0,0027	0,0021	0,0027	0,0015	0,0024		

Nota: La tabla muestra los resultados del análisis dinámico no lineal en la dirección X para una estructura con disipadores Shear Link Bozzo. Los promedios de las derivas por nivel, en la última columna, reflejan una reducción significativa en las deformaciones, con todos los valores por debajo del límite conservador de 0,005. Fuente: Elaboración propia.

Figura 59Comparación de derivas máximas ΔX

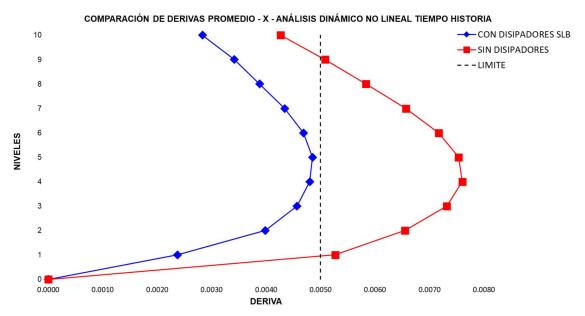

Nota: La figura compara los desplazamientos en la dirección X. Las líneas punteadas representan los desplazamientos con SLB, mientras que las líneas continuas muestran los desplazamientos sin disipadores. Se observa que los desplazamientos con disipadores son significativamente menores, lo que evidencia la efectividad de los SLB en reducir los desplazamientos y mejorar la estabilidad estructural frente a sismos. Fuente: Elaboración propia.

Tabla 42Resumen de derivas ΔX promedio de la estructura sin y con disipadores SLB

Nivel	Sin disipadores ∆x	Con disipadores Shear Link Bozzo ∆x	Reducción (%)
10	0,0043	0,0028	34
09	0,0051	0,0034	33
08	0,0058	0,0039	33
07	0,0066	0,0043	34
06	0,0072	0,0047	35
05	0,0075	0,0049	36
04	0,0076	0,0048	37
03	0,0073	0,0046	38
02	0,0066	0,0040	39
01	0,0053	0,0024	55

Nota: La tabla presenta un resumen comparativo de las derivas promedio en una estructura sin y con disipadores Shear Link Bozzo. Se observa que la implementación de los disipadores reduce significativamente las derivas en todos los niveles, con reducciones que varían entre el 33% y el 55%. Este análisis demuestra la eficacia de los disipadores Shear Link Bozzo en mejorar el comportamiento sísmico de la estructura, minimizando las deformaciones y aumentando la seguridad estructural. Fuente: Elaboración propia.

Figura 60 Comparación de derivas máximas ΔX promedio

Nota: La figura muestra una comparación de las derivas promedio en la dirección X obtenidas del análisis dinámico no lineal en el tiempo para estructuras con y sin disipadores SLB. Las derivas correspondientes a la estructura sin disipadores (línea roja) superan consistentemente el límite de 0,005, mientras que las derivas de la estructura con disipadores SLB (línea azul) se mantienen por debajo de este umbral. Fuente: Elaboración propia.

4.2.2.1.4 Fuerza cortante

Tabla 43 *Fuerza cortante Vx de la estructura*

Fuerz	a cortante (del análisis (dinámico n	o lineal tie	mpo – histo	oria X – sin	disipador
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	(Tonf)
	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(10111)
10	1948,56	1787,47	2033,15	2266,64	1698,89	2154,26	1981,50
09	3735,72	3453,84	3388,44	4025,32	3065,79	3697,58	3561,11
08	5369,35	4921,56	4276,72	5290,83	4136,14	4860,84	4809,24
07	6818,71	6233,98	5091,02	5954,92	5003,77	6081,51	5863,98
06	7986,65	7387,05	6090,99	6067,65	5844,28	7269,39	6774,33
05	8765,91	8291,20	6963,86	6521,20	6699,57	8366,85	7601,43
04	9159,08	8942,16	7610,24	7237,09	7605,96	9173,42	8287,99
03	9225,99	9453,41	8164,53	7805,07	8255,05	9777,14	8780,20
02	9007,44	9930,25	8670,59	8220,51	8488,73	10193,49	9085,17
01	8836,08	10285,39	9025,19	8475,73	8324,59	10416,33	9227,22

Nota: La tabla presenta las fuerzas cortantes en la dirección Vx para una estructura sin disipadores, obtenidos del análisis dinámico no lineal en el tiempo. Los promedios permiten evaluar la demanda sísmica por nivel y facilitarán comparaciones o decisiones de diseño para mejorar la respuesta sísmica de la estructura. Fuente: Elaboración propia.

Tabla 44Fuerza cortante Vx de la estructura con disipadores SLB

Fue	rza cortant	e del anális	sis dinámico	no lineal t	iempo – his	storia X – c	con SLB
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	(Tonf)
	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(1011)
10	2465,62	1922,17	2169,55	1881,45	1717,68	1922,17	2013,10
09	4535,10	3565,83	4012,50	3495,40	3135,70	3565,83	3718,39
08	6376,95	5017,78	5749,01	4932,13	4461,53	5017,78	5259,20
07	8182,42	6295,36	7506,49	6205,34	5585,34	6295,36	6678,39
06	9685,11	7284,89	8984,82	7327,63	6341,71	7284,89	7818,18
05	10876,11	8108,16	10203,36	8271,01	7168,97	8108,16	8789,29
04	11983,90	8822,94	11364,58	9129,62	8153,24	8822,94	9712,87
03	12720,48	9230,96	12181,52	9654,15	8946,83	9230,96	10327,48
02	12560,03	9037,74	12097,91	9632,36	9152,27	9037,74	10253,01
01	11822,90	8525,46	11338,46	9427,73	9043,44	8525,46	9780,58

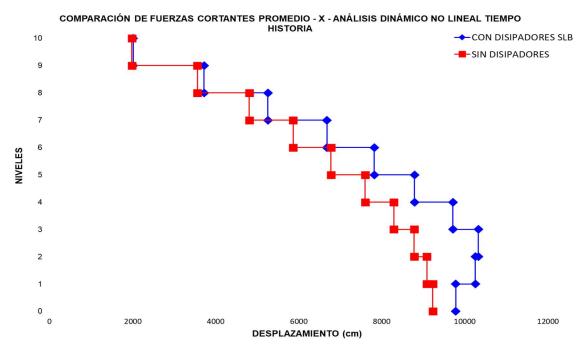

Nota: La tabla presenta las fuerzas cortantes en la dirección Vx obtenidos del análisis dinámico no lineal tiempo – historia, para una estructura equipada con disipadores Shear Link Bozzo. Los resultados, desglosados por nivel y por diferentes casos de historia sísmica (TH07, TH66, TH74), muestran cómo la incorporación de los disipadores reduce significativamente las fuerzas cortantes en comparación con una estructura sin disipadores. Los valores promedio en la última columna permiten evaluar la eficiencia de los disipadores en la reducción de la demanda sísmica, contribuyendo a un diseño estructural más seguro y resiliente. Fuente: Elaboración propia.

Tabla 45Resumen de cortantes Vx promedio de la estructura sin y con disipador SLB

Nivel	Sin disipadores (Tonf)	Con disipadores SLB (Tonf)	Porcentaje (%)
10	1981,50	2013,10	-2
09	3561,11	3718,39	-4
08	4809,24	5259,20	-9
07	5863,98	6678,39	-14
06	6774,33	7818,18	-15
05	7601,43	8789,29	-16
04	8287,99	9712,87	-17
03	8780,20	10327,48	-18
02	9085,17	10253,01	-13
01	9227,22	9780,58	-6

Nota: La tabla presenta un resumen de los valores promedio de cortantes Vx en la estructura, comparando los resultados sin y con el uso de disipadores Shear Link Bozzo (SLB). Se observa que, en general, la inclusión de los disipadores SLB provoca un aumento en los cortantes a lo largo de los niveles, lo cual es consistente con el incremento de la rigidez estructural que aportan estos dispositivos. Fuente: Elaboración propia.

Figura 61Comparación de fuerzas cortantes Vx promedio

Nota: La figura compara las fuerzas cortantes en la dirección X de la estructura, con y sin disipadores SLB. El análisis muestra que los disipadores SLB incrementan las cortantes, debido al aumento de rigidez, lo que mejora la capacidad sísmica pero implica mayor esfuerzo en los elementos estructurales. Fuente: Elaboración propia.

4.2.2.1.5 Aceleración

 Tabla 46

 Aceleraciones máximas de la estructura

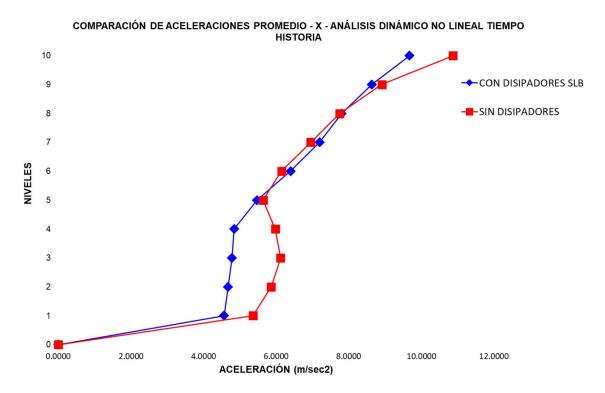
Acelo	eraciones d	el análisis d	linámico no	lineal tiem	po — histor	ria X – sin o	disipador
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	(m/sec2)
	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(III/Sec2)
10	10,8693	10,4845	9,5208	10,9258	10,9936	12,4244	10,8697
09	9,7027	9,3461	7,9268	8,7325	7,8682	9,9016	8,9130
08	8,9671	8,3974	6,8966	8,1931	6,8533	7,1977	7,7509
07	7,8902	7,4991	6,0921	7,7840	6,6328	5,8263	6,9541
06	6,3071	6,3577	5,9358	7,1606	5,7855	5,3280	6,1458
05	5,0331	5,5038	5,8997	6,7977	5,1516	5,4658	5,6420
04	5,2877	4,9336	7,1030	6,0194	6,8253	5,7002	5,9782
03	5,5234	4,6766	7,2141	6,5292	7,2357	5,5452	6,1207
02	5,2606	4,4097	7,5282	6,0672	6,5784	5,3439	5,8647
01	4,6333	3,9896	7,6291	5,4611	5,4547	4,9939	5,3603

Nota: La tabla muestra las aceleraciones máximas de la estructura en diferentes niveles sin el uso de disipadores, obtenidas a partir de un tiempo – historia. Se evaluaron tres historias sísmicas (TH07, TH66, TH74), y se observa que las aceleraciones disminuyen desde los niveles superiores hacia los inferiores. El promedio de aceleración por nivel proporciona una visión general del comportamiento estructural bajo estas condiciones. Fuente: Elaboración propia.

Tabla 47Aceleraciones máximas de la estructura con disipadores SLB

Ac	Aceleraciones del análisis dinámico no lineal tiempo – historia X – con SLB										
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio				
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	(m/sec2)				
	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(III/SCC2)				
10	11,147	9,5884	9,4908	10,1252	8,0781	9,5884	9,67				
09	9,8391	8,4092	9,0524	8,8151	7,2876	8,4092	8,64				
08	9,1971	7,3315	8,5792	7,8574	6,5226	7,3315	7,80				
07	8,5461	6,7775	7,8085	7,2712	6,0049	6,7775	7,20				
06	7,706	5,924	6,7594	6,3938	5,6641	5,924	6,40				
05	6,6522	4,7718	5,68	5,7086	5,2718	4,7718	5,48				
04	5,5384	4,2157	4,6459	5,7722	4,6507	4,2157	4,84				
03	4,3648	4,3415	5,2865	5,4549	4,9202	4,3415	4,78				
02	3,8074	4,1526	6,074	4,7351	5,1409	4,1526	4,68				
01	3,8064	3,824	6,7729	4,4862	4,6858	3,824	4,57				

Nota: La tabla presenta las aceleraciones máximas en los distintos niveles de la estructura al considerar el uso de SLB durante un análisis tiempo – historia. Los resultados muestran las respuestas de la estructura bajo tres historias sísmicas (TH07, TH66, TH74) en dos casos para cada una. Al comparar con los datos sin SLB, se puede evaluar la efectividad de los disipadores en reducir las aceleraciones en cada nivel. El promedio de las aceleraciones por nivel ofrece una visión general del impacto positivo de los SLB en la mitigación de la respuesta sísmica. Fuente: Elaboración propia.


Tabla 48Resumen de aceleraciones promedio en X de la estructura sin y con disipador SLB

Nivel	Sin disipadores (m/sec2)	Con disipadores Shear Link Bozzo (m/sec2)	Porcentaje (%)
10	10,8697	9,6697	11
09	8,9130	8,6354	3
08	7,7509	7,8032	-1
07	6,9541	7,1976	-4
06	6,1458	6,3952	-4
05	5,6420	5,4760	3
04	5,9782	4,8398	19
03	6,1207	4,7849	22
02	5,8647	4,6771	20
01	5,3603	4,5666	15

Nota: La tabla presenta un resumen de las aceleraciones promedio en la dirección X de la estructura, comparando los resultados obtenidos con y sin el uso de disipadores Shear Link Bozzo (SLB). En la mayoría de los niveles, la incorporación de los disipadores SLB reduce las aceleraciones, mejorando el comportamiento dinámico de la estructura. Sin embargo, en algunos niveles se observa un aumento en las aceleraciones, lo cual se debe al incremento de la rigidez que los disipadores SLB aportan a la estructura. Fuente: Elaboración propia.

Figura 62

Comparación de aceleraciones (m/sec2) en X promedio

Nota: La figura compara las aceleraciones promedio en la dirección X de la estructura sin y con disipadores Shear Link Bozzo (SLB). Se observa que los disipadores SLB incrementan las aceleraciones en los niveles superiores debido al aumento de rigidez que aportan a la estructura, lo que resulta en una mayor respuesta frente a las fuerzas sísmicas. Fuente: Elaboración propia.

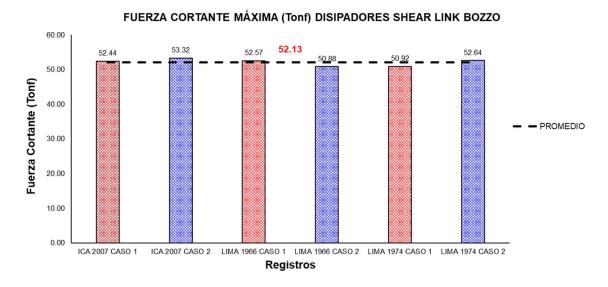

4.2.2.1.6 Curva histerética

Tabla 49Resultados de fuerza cortante y desplazamiento máximo

Registro	Fuerza cortante (Tonf)	Desplazamiento (cm)
Ica 2007 caso 1	52,44	0,69
Ica 2007 caso 2	53,32	0,81
Lima 1966 caso 1	52,57	0,71
Lima 1966 caso 2	50,88	0,50
Lima 1974 caso 1	50,92	0,51
Lima 1974 caso 2	52,64	0,72
Promedio	52,13	0,66

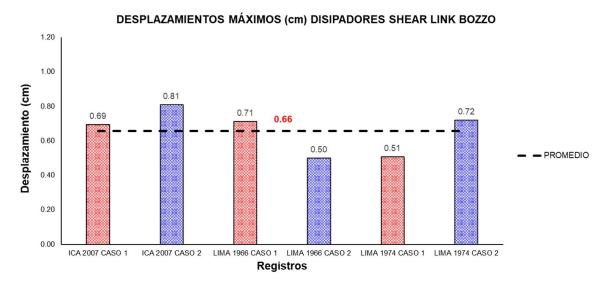

Nota: La tabla muestra los resultados que el disipador Shear Link Bozzo tiene un rendimiento consistente bajo diferentes escenarios sísmicos, con una fuerza cortante máxima promedio de 52,13 toneladas-fuerza y un desplazamiento promedio de 0,66 cm. Estos valores reflejan la capacidad del disipador para manejar grandes cantidades de energía sísmica, contribuyendo a la estabilidad y seguridad de la estructura durante eventos sísmicos de diversas magnitudes. Fuente: Elaboración propia.

Figura 63Fuerza cortante máximas con los disipadores Shear Link Bozzo

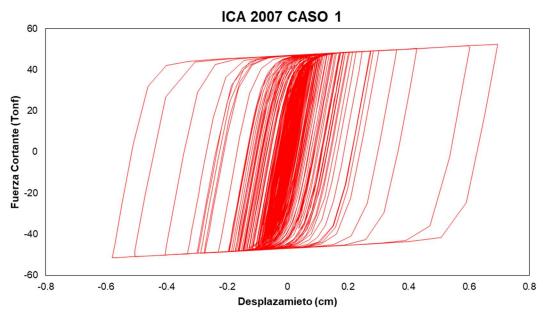

Nota: La figura muestra las fuerzas cortantes máximas de la curva histerética alcanzadas con los disipadores Shear Link Bozzo bajo diferentes registros sísmicos, con valores que oscilan entre 50,88 tonf y 53,32 tonf. El promedio de estas fuerzas cortantes es de 52,13 tonf, lo que destaca la capacidad consistente de los disipadores Shear Link Bozzo para soportar y mitigar las demandas sísmicas significativas. Este comportamiento es crucial para garantizar la integridad estructural y reducir el riesgo de daños durante eventos sísmicos. Fuente: Elaboración propia.

Figura 64Desplazamientos máximos con los disipadores Shear Link Bozzo

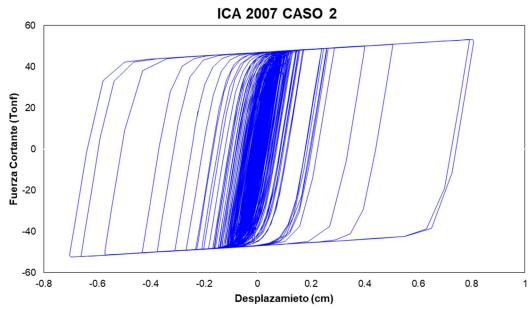

Nota: Los desplazamientos máximos de la curva histerética alcanzadas por los disipadores Shear Link Bozzo bajo los registros sísmicos seleccionados oscilan entre 0,50 cm y 0,81 cm. El promedio de estos desplazamientos es de 0,66 cm. Este análisis evidencia la capacidad de los disipadores de Fluido Viscoso para manejar deformaciones significativas bajo eventos sísmicos, asegurando un comportamiento estructural seguro y controlado. Fuente: Elaboración propia.

Figura 65Curva histerética con disipador Shear Link Bozzo – Ica 2007 caso 1

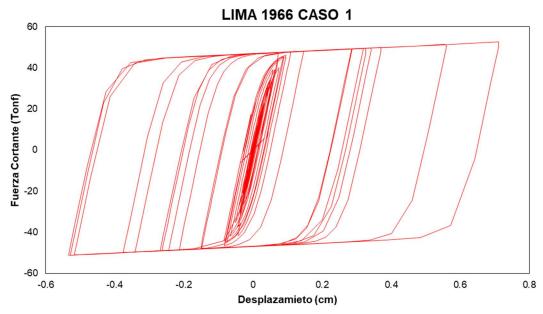

Nota: La curva histerética generada para el disipador Shear Link Bozzo bajo el sismo de Ica 2007 en el Caso 1 muestra una fuerza cortante máxima de 52,44 toneladas-fuerza (tonf) con un desplazamiento máximo de 0,69 cm. Esta curva evidencia la capacidad del disipador para captar y disipar la energía generada por el sismo, lo cual es esencial para disminuir la demanda sísmica en la estructura y la mitigación de posibles daños. Fuente: Elaboración propia.

Figura 66Curva histerética con disipador Shear Link Bozzo – Ica 2007 caso 2

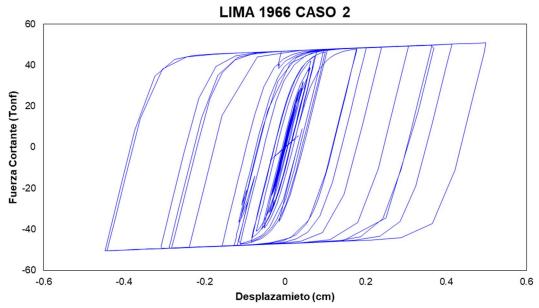

Nota: La curva histerética generada para el disipador Shear Link Bozzo bajo el sismo de Ica 2007 en el caso 2 muestra una fuerza cortante máxima de 53,32 toneladas-fuerza (tonf) con un desplazamiento máximo de 0,81 cm. Esta curva evidencia la capacidad del disipador para captar y disipar la energía generada por el sismo, lo cual es esencial para disminuir la demanda sísmica en la estructura y la mitigación de posibles daños. Fuente: Elaboración propia.

Figura 67Curva histerética con disipador Shear Link Bozzo – Lima 1966 caso 1

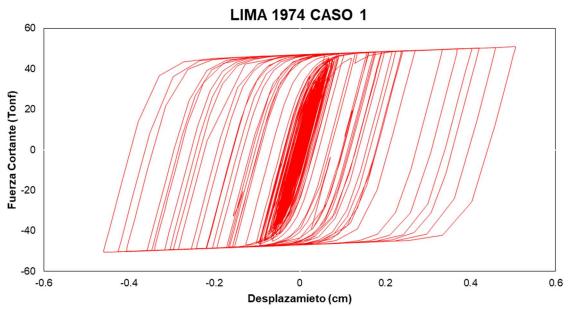
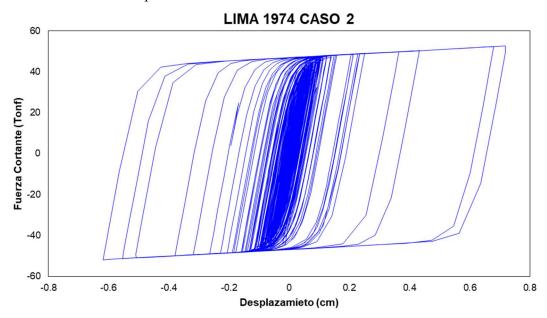

Nota: La curva histerética generada para el disipador Shear Link Bozzo bajo el sismo de Lima 1966 en el caso 1 muestra una fuerza cortante máxima de 52,57 toneladas-fuerza (tonf) con un desplazamiento máximo de 0,71 cm. Esta curva evidencia la capacidad del disipador para captar y disipar la energía generada por el sismo, lo cual es esencial para disminuir la demanda sísmica en la estructura y la mitigación de posibles daños. Fuente: Elaboración propia.

Figura 68Curva histerética con disipador Shear Link Bozzo – Lima 1966 caso 2

Nota: La curva histerética generada para el disipador Shear Link Bozzo bajo el sismo de Lima 1966 en el caso 2 muestra una fuerza cortante máxima de 50,88 toneladas-fuerza (tonf) con un desplazamiento máximo de 0,50 cm. Esta curva evidencia la capacidad del disipador para captar y disipar la energía generada por el sismo, lo cual es esencial para disminuir la demanda sísmica en la estructura y la mitigación de posibles daños. Fuente: Elaboración propia.


Figura 69Curva histerética con disipador Shear Link Bozzo – Lima 1974 caso 1

Nota: La curva histerética generada para el disipador de Fluido Viscoso bajo el sismo de Lima 1974 en el caso 1 muestra una fuerza cortante máxima de 50,92 toneladas-fuerza (tonf) con un desplazamiento máximo de 0,51 cm. Esta curva evidencia la capacidad del disipador para captar y disipar la energía generada por el sismo, lo cual es esencial para disminuir la demanda sísmica en la estructura y la mitigación de posibles daños. Fuente: Elaboración propia.

Figura 70

Curva histerética con disipador Shear Link Bozzo – Lima 1974 caso 2

Nota: La curva histerética generada para el disipador Shear Link Bozzo bajo el sismo de Lima 1974 en el Caso 2 muestra una fuerza cortante máxima de 52,64 toneladas-fuerza (tonf) con un desplazamiento máximo de 0,72 cm. Esta curva evidencia la capacidad del disipador para captar y disipar la energía generada por el sismo, lo cual es esencial para disminuir la demanda sísmica en la estructura y la mitigación de posibles daños. Fuente: Elaboración propia.

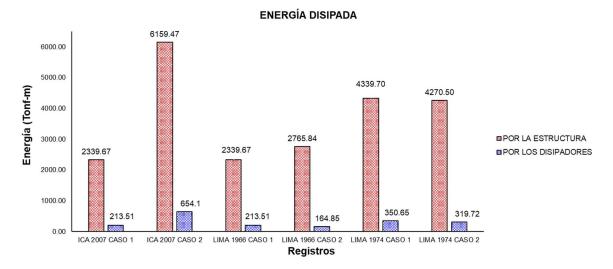

4.2.2.1.7 Balance energético

Tabla 50Distribución de energía disipada por la estructura y por los disipadores Shear Link Bozzo

Registro	Energía de entrada	Energía di la estri		Energía disipada por los disipadores Shear Link Bozzo		
	(tonf-m)	(tonf-m)	(%)	(tonf-m)	(%)	
Ica 2007 caso 1	2553,21	2339,67	91,64	213,51	8,36	
Ica 2007 caso 2	6813,57	6159,47	90,40	654,10	9,60	
Lima 66 caso 1	2553,27	2339,67	91,63	213,51	8,36	
Lima 66 caso 2	2930,75	2765,84	94,37	164,85	5,62	
Lima 74 caso 1	4690,49	4339,70	92,52	350,65	7,48	
Lima 74 caso 2	4590,33	4270,50	93,03	319,72	6,97	
Promedio	4021,94	3702,48	92,27	319,39	7,73	

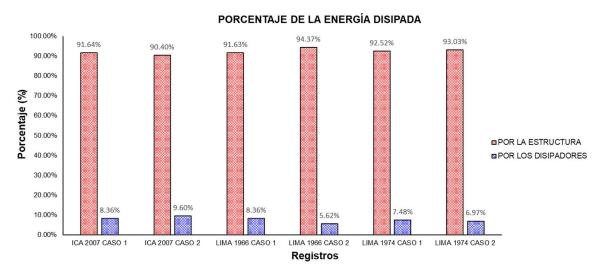

Nota: La tabla muestra un análisis comparativo de la energía disipada por la estructura y por los disipadores Shear Link Bozzo en diferentes registros sísmicos (Ica 2007, Lima 66, Lima 74) bajo distintos casos. Se observa que, en promedio, el 92,27% de la energía es disipada por la estructura, mientras que los disipadores Shear Link Bozzo contribuyen con la disipación del 7,73% de la energía total. Estos resultados destacan la eficiencia de los disipadores en la mitigación de los efectos sísmicos, complementando la capacidad de la estructura para absorber energía. Fuente: Elaboración propia.

Figura 71 *Energía disipada por la estructura y por el disipador Shear Link Bozzo*

Nota: La figura muestra la comparación de la energía disipada por la estructura y por los disipadores Shear Link Bozzo (SLB). Los resultados evidencian que, al incorporar los disipadores SLB, se incrementa la rigidez de la estructura, lo que permite que esta disipe una mayor cantidad de energía. Esta mejora en la disipación de energía indica que los disipadores SLB no solo contribuyen a reducir las vibraciones y desplazamientos, sino que también fortalecen la capacidad de la estructura para manejar las cargas sísmicas, optimizando su desempeño durante eventos sísmicos. Fuente: Elaboración propia.

Figura 72Porcentaje de energía disipada por la estructura y por el disipador Shear Link Bozzo

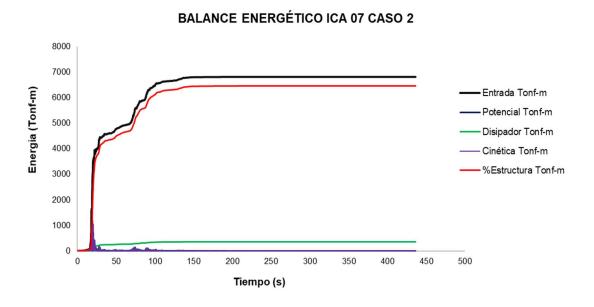

Nota: La figura muestra el porcentaje de energía disipada por la estructura y por los disipadores Shear Link Bozzo (SLB). Los resultados reflejan que, al aumentar la rigidez de la estructura con los disipadores SLB, la estructura disipa un mayor porcentaje de energía durante eventos sísmicos. Este comportamiento evidencia la efectividad de los disipadores SLB en mejorar el control de las vibraciones y reducir las deformaciones, optimizando así la respuesta sísmica del edificio. Fuente: Elaboración propia.

Figura 73Balance energético de la estructura bajo el registro sísmico de Ica 2007 - caso 1

BALANCE ENERGÉTICO ICA 07 CASO 1 3000 2500 Entrada Tonf-m Energia (Tonf-m) 2000 Potencial Tonf-m 1500 Disipador Tonf-m Cinética Tonf-m 1000 %Estructura Tonf-m 500 0 0 60 100 80 120 140 160 180 200 Tiempo (s)

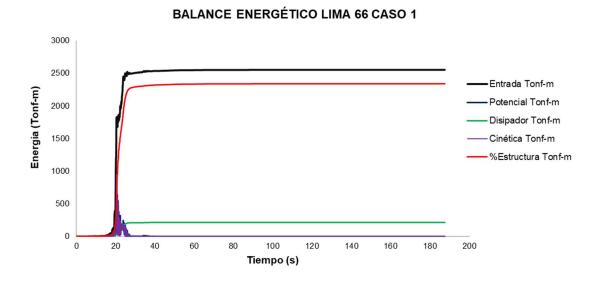

Nota: Se observa un balance energético adecuado en la estructura bajo el sismo de Ica 2007 - caso 1, con una efectiva absorción de energía por los SLB, lo que contribuye a la estabilidad estructural. Fuente: Elaboración propia.

Figura 74Balance energético de la estructura bajo el registro sísmico de Ica 2007 - caso 2

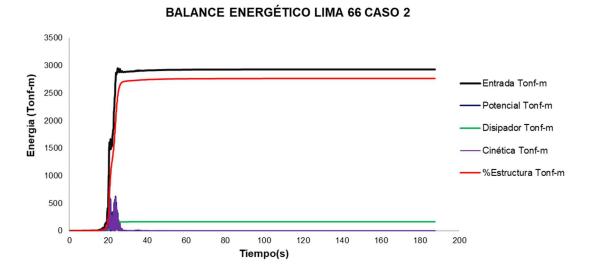

Nota: Se observa un balance energético adecuado en la estructura bajo el sismo de Ica 2007 - caso 2, con una efectiva absorción de energía por los SLB, lo que contribuye a la estabilidad estructural. Fuente: Elaboración propia.

Figura 75Balance energético de la estructura bajo el registro sísmico de Lima 66 - caso 1

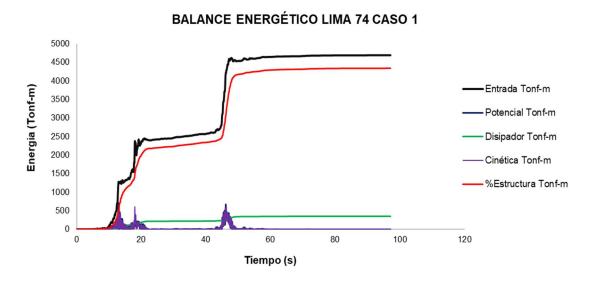

Nota: Se observa un balance energético adecuado en la estructura bajo el sismo de Lima 66 - caso 1, con una efectiva absorción de energía por los SLB, lo que contribuye a la estabilidad estructural. Fuente: Elaboración propia.

Figura 76Balance energético de la estructura bajo el registro sísmico de Lima 66 - caso 2

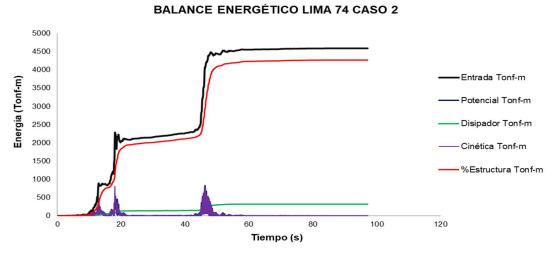

Nota: Se observa un balance energético adecuado en la estructura bajo el sismo de Lima 66 - caso 2, con una efectiva absorción de energía por los SLB, lo que contribuye a la estabilidad estructural. Fuente: Elaboración propia.

Figura 77Balance energético de la estructura bajo el registro sísmico de Lima 74 - caso 1

Nota: Se observa un balance energético adecuado en la estructura bajo el sismo de Lima 74 - caso 1, con una efectiva absorción de energía por los SLB, lo que contribuye a la estabilidad estructural. Fuente: Elaboración propia.

Figura 78Balance energético de la estructura bajo el registro sísmico de Lima 74 - caso 2

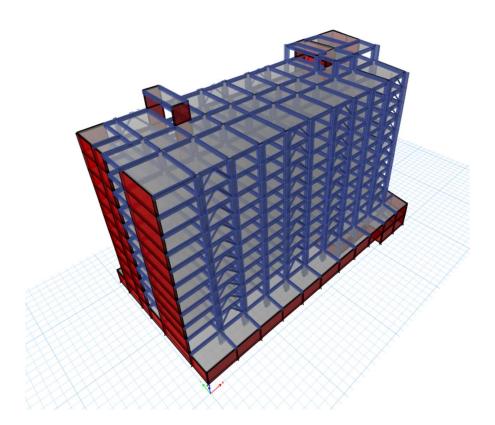
Nota: Se observa un balance energético adecuado en la estructura bajo el sismo de Lima 74 - caso 2, con una efectiva absorción de energía por los SLB, lo que contribuye a la estabilidad estructural. Fuente: Elaboración propia.

4.2.2.1.8 Costo del disipador

En la Tabla 51 se presenta el costo referencial de implementación de los disipadores SLB, mostrando la cantidad, precio unitario y costo parcial de cada tipo. El costo total estimado para la instalación de estos disipadores SLB es de 411,000.00 dólares.

Tabla 51Costo de implementación de disipadores SLB

Tipo	Cantidad	Precio unitario (\$)	Parcial (\$)	
M.D.	125	200,00	25 000,00	
SLB4 10_5	18	3 000,00	54 000,00	
SLB4 10_6	4	3 500,00	14 000,00	
SLB4 15_5	5	4 000,00	20 000,00	
SLB4 15_6	7	4 500,00	31 500,00	
SLB4 15_7	6	5 000,00	30 000,00	
SLB4 20_6	10	6 000,00	60 000,00	
SLB4 20_7	7	6 500,00	45 500,00	
SLB4 25_6	3	7 000,00	21 000,00	
SLB4 25_8	4	8 000,00	32 000,00	
SLB4 30_7	2	9 000,00	18 000,00	
SLB4 30_8	6	10 000,00	60 000,00	
	Costo total		411 000,00	


Fuente: Elaboración propia.

4.2.2.2 Disipador Tuned Added Damping and Stiffness (TADAS)

En la búsqueda de mejorar la capacidad de la estructura para disipar energía, se procede a la implementación del sistema TADAS (Tuned Added Damping and Stiffness). Este dispositivo de control pasivo es altamente eficiente en la absorción de la energía sísmica mediante la deformación controlada de placas metálicas. La integración del sistema TADAS incrementa notablemente la rigidez estructural, especialmente en los puntos estratégicos de la edificación, lo que proporciona una mayor capacidad para resistir cargas laterales.

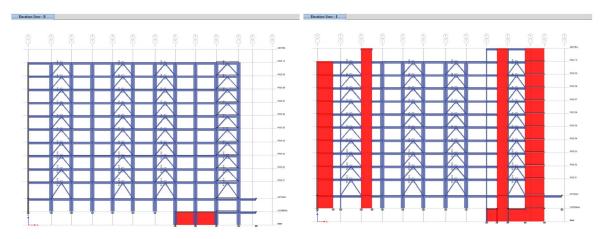

Este aumento de rigidez, además de ofrecer un amortiguamiento adicional, mejora significativamente la estabilidad lateral de la estructura, reduciendo los desplazamientos y vibraciones durante un evento sísmico. De este modo, la solución técnica del sistema TADAS es esencial para garantizar la seguridad y durabilidad del edificio frente a solicitudes sísmicas severas, asegurando que la edificación mantenga su integridad y funcionalidad.

Figura 79Vista isométrica de la estructura con la incorporación de disipadores TADAS

Nota: En la vista isométrica se aprecian las ubicaciones de los disipadores tipo TADAS en la estructura. Se modelaron un total de 80 disipadores, distribuidos uniformemente con 8 unidades por cada nivel. La implementación de estos dispositivos tiene como objetivo mejorar el comportamiento sísmico de la edificación al aumentar la capacidad de disipación de energía. Fuente: Elaboración propia.

Figura 80Vista en elevación de los pórticos en el eje B y E con disipadores TADAS

Nota: La vista en elevación muestra los pórticos en el eje B y E de la estructura con la implementación de disipadores TADAS, con cuatro disipadores colocados en cada nivel. Estos elementos están estratégicamente ubicados para mejorar la disipación de energía sísmica y optimizar la respuesta global de la estructura. Fuente: Elaboración Propia.

Análisis sísmico implementando disipadores TADAS

Tabla 52Propiedades mecánicas del TADAS

Fy =	253000 KN/m2
E =	210000000 KN/m2

Fuente: Elaboración propia.

Tabla 53Propuesta de valores

β	0,25	
α	0,25 0,05	
N	10	
β	0,25	
βedificio %	0,25 0,005	

Fuente: Elaboración propia.

Tabla 54Distribución de esfuerzos cortantes

Nivel	Altura (m)	Cortante por nivel Vx (kN)	Número de disipadores por nivel	Cortante de fluencia del disipador Vy (kN)
10	43,55	3013,42	8	376,68
09	40,00	5792,77	8	724,10
08	36,45	8224,70	8	1028,09
07	32,90	10309,21	8	1288,65
06	29,35	12046,30	8	1505,79
05	25,80	13435,97	8	1679,50
04	22,25	14478,22	8	1809,78
03	18,70	15173,06	8	1896,63
02	15,15	15520,48	8	1940,06
01	11,60	15520,48	8	1940,06

Fuente: Elaboración propia.

Tabla 55Dimensiones del disipador TADAS

Nivel	Altura del Disipador h(m)	Base del Disipador b(m)	Espesor t(m)	Fuerza de Fluencia Para Una Plancha F _{s1} (kN)	Cortante de Fluencia del Disipador V _y (kN)	# de Planchas Requeridas	#Plancha Disipador TADAS	Fuerza de fluencia del Disipador Fy(kN)	Despl Fluencia ∆x(m)	Rigidez Elastica K1 (kN/m)	Fuerza Ultima del Disipador F _u (kN/m)
10	0,3	0,15	0,04	33,733	376,68	11,17	12	438,53	0,0027	161778	657,80
09	0,3	0,15	0,06	75,90	724,10	9,54	10	759,00	0,0018	420000	1138,50
08	0,3	0,15	0,07	103,31	1028,09	9,95	10	1033,08	0,0015	666944	1549,63
07	0,3	0,15	0,08	134,93	1288,65	9,55	10	1349,33	0,0014	995556	2024,00
06	0,3	0,15	0,08	134,93	1505,79	11,16	12	1619,20	0,0014	1194667	2428,80
05	0,3	0,15	0,09	170,78	1679,50	9,83	10	1707,75	0,0012	1417500	2561,63
04	0,3	0,15	0,09	170,78	1809,78	10,60	10	1878,53	0,0012	1559250	2817,79
03	0,3	0,15	0,09	170,78	1896,63	11,11	12	2049,30	0,0012	1701000	3073,95
02	0,3	0,15	0,09	170,78	1940,06	11,36	12	2049,30	0,0012	1701000	3073,95
01	0,3	0,15	0,09	170,78	1940,06	11,36	12	2049,30	0,0012	1701000	3073,95

Fuente: Elaboración propia.

Tabla 56Coeficiente de reducción por amortiguamiento

Rigidez Post Fluencia K2 (kN/m)	Despl. Ultimo ∆u	Ductilidad μ	Rigidez Efectiva Keff (kN/m)	Fuerza de Resistencia Caracteristica Qd(kN)	Energia Disipada en un ciclo completo Ed(kN)	Energia de Deformacion Maxima Eu(kN)	Amortiguamiento Efectivo del TADAS βeff(kN) (%)	Amortiguamiento Total βt(kN) (%)	Coeficiente de Reduccion por Amortiguamiento βnD(kN)
8088,89	0,030	11	22060,61	416,61	45,17	9,81	36,65	37,2	3,134
21000,00	0,020	11	57272,73	721,05	52,12	11,32	36,65	37,2	3,134
33347,22	0,017	11	90946,97	981,43	60,81	13,20	36,65	37,2	3,134
49777,78	0,015	11	135757,58	1281,87	69,50	15,09	36,65	37,2	3,134
59733,33	0,015	11	162909,09	1538,24	83,39	18,11	36,65	37,2	3,134
70875,00	0,013	11	193295,45	1622,36	78,18	16,97	36,65	37,2	3,134
77962,50	0,013	11	212625,00	1784,60	86,00	18,67	36,65	37,2	3,134
85050,00	0,013	11	231954,55	1946,84	93,82	20,37	36,65	37,2	3,134
85050,00	0,013	11	231954,55	1946,84	93,82	20,37	36,65	37,2	3,134
85050,00	0,013	11	231954,55	1946,84	93,82	20,37	36,65	37,2	3,134

Fuente: Elaboración propia.

Tabla 57Selección del brazo metálico

Rigidez mínima del brazo metálico brazo (kN/m)	Longitud efectiva al 80% de la longitud total adiag(m)	Área mínima del brazo metálico adiag (cm2)	Diámetro brazo metálico D(cm)	Espesor brazo metálico brazo (cm)	Área final del brazo metálico adiag (cm2)	Rigidez del brazo metálico Kbr (kN/m)
32356	4,76	7,33	0,20	0,01	30,63	135135
84000	4,76	19,04	0,20	0,01	30,63	135135
133389	4,76	30,23	0,20	0,01	30,63	135135
199111	4,76	45,13	0,20	0,02	59,69	263339
238933	4,76	54,16	0,20	0,02	59,69	263339
283500	4,76	64,26	0,20	0,03	87,18	384614
311850	4,76	70,69	0,20	0,03	87,18	384614
340200	4,76	77,11	0,20	0,03	87,18	384614
340200	4,76	77,11	0,20	0,03	87,18	384614
340200	4,76	77,11	0,20	0,03	87,18	384614

Fuente: Elaboración propia.

4.2.2.2.1 Modos de vibración

Tabla 58 *Modos de vibración sin y con disipadores TADAS*

Modo	Sin disipadores Periodo (s)	Con disipadores Periodo (s)	Reducción (%)
1	1,063	0,744	30,01
2	0,784	0,655	16,45
3	0,568	0,476	16,20

Nota: La tabla muestra una comparación de los periodos de vibración de los primeros tres modos de una estructura, analizados sin y con el uso de disipadores TADAS. Se observa una reducción significativa en los periodos de vibración cuando se utilizan los disipadores, con disminuciones del 30,01%, 16,45% y 16,20% para los modos 1, 2 y 3, respectivamente. Esta reducción en los periodos indica un aumento en la rigidez de la estructura debido a los disipadores, lo que hace que la estructura responda de manera más rápida a las vibraciones sísmicas. Esta información es crucial para el diseño sismorresistente, ya que un menor periodo de vibración está asociado con una estructura más rígida, lo que puede influir en la distribución de las fuerzas sísmicas y en la necesidad de reforzamiento en ciertas áreas para garantizar la seguridad y estabilidad estructural. Fuente: Elaboración propia.

4.2.2.2.2 Desplazamientos máximos

Tabla 59Desplazamientos máximos en X de la estructura

Desplaza	mientos del	análisis di	inámico no	lineal tien	npo – histo	ria X – sir	ı disipador
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	
	dx (m)						
10	0,2533	0,2365	0,2745	0,2243	0,2170	0,2650	0,2451
09	0,2344	0,2197	0,2550	0,2088	0,2041	0,2477	0,2283
08	0,2126	0,2005	0,2326	0,1908	0,1891	0,2275	0,2088
07	0,1888	0,1787	0,2071	0,1703	0,1715	0,2041	0,1867
06	0,1627	0,1544	0,1789	0,1472	0,1509	0,1773	0,1619
05	0,1350	0,1280	0,1484	0,1222	0,1275	0,1480	0,1349
04	0,1066	0,1003	0,1166	0,0961	0,1018	0,1168	0,1064
03	0,0779	0,0725	0,0847	0,0697	0,0748	0,0853	0,0775
02	0,0503	0,0462	0,0543	0,0445	0,0482	0,0552	0,0498
01	0,0253	0,0230	0,0272	0,0222	0,0242	0,0280	0,0250

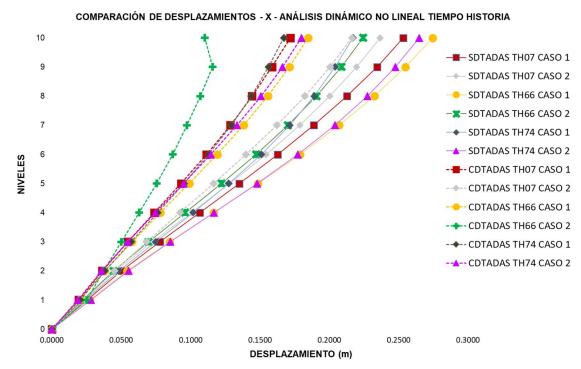

Nota: La tabla presenta los desplazamientos en la dirección X para una estructura sin disipadores, obtenidos del análisis dinámico no lineal tiempo-historia. Los promedios de desplazamiento por nivel, en la última columna, ofrecen una visión del comportamiento estructural ante sismos, lo que es esencial para evaluar la necesidad de implementar sistemas de disipación de energía. Fuente: Elaboración propia.

Tabla 60Desplazamientos máximos en X de la estructura con disipadores TADAS

Desplaza	Desplazamientos dx (cm) del análisis dinámico no lineal tiempo – historia X – con							
	TADAS							
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio	
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2		
	dx (cm)	dx (cm)	dx (cm)	dx (cm)	dx (cm)	dx (cm)	dx (cm)	
10	0,1719	0,2164	0,1847	0,1102	0,1672	0,1798	0,1717	
09	0,1586	0,2006	0,1712	0,1159	0,1563	0,1663	0,1615	
08	0,1443	0,1824	0,1557	0,1071	0,1437	0,1508	0,1473	
07	0,1287	0,1621	0,1382	0,0974	0,1292	0,1334	0,1315	
06	0,1115	0,1400	0,1192	0,0870	0,1130	0,1146	0,1142	
05	0,0930	0,1166	0,0990	0,0754	0,0952	0,0949	0,0957	
04	0,0738	0,0923	0,0782	0,0630	0,0763	0,0747	0,0764	
03	0,0547	0,0683	0,0577	0,0501	0,0571	0,0547	0,0571	
02	0,0362	0,0450	0,0381	0,0373	0,0381	0,0357	0,0384	
01	0,0193	0,0237	0,0201	0,0250	0,0203	0,0185	0,0212	

Nota: La tabla muestra los desplazamientos en la dirección X para una estructura con disipadores TADAS, evidenciando una reducción significativa en todos los niveles bajo diferentes condiciones sísmicas. Los promedios indican que los disipadores mejoran la estabilidad estructural, reduciendo el riesgo de daño y asegurando la funcionalidad post-sismo. Fuente: Elaboración propia.

Figura 81Comparación de desplazamientos máximos en X sin y con disipadores TADAS

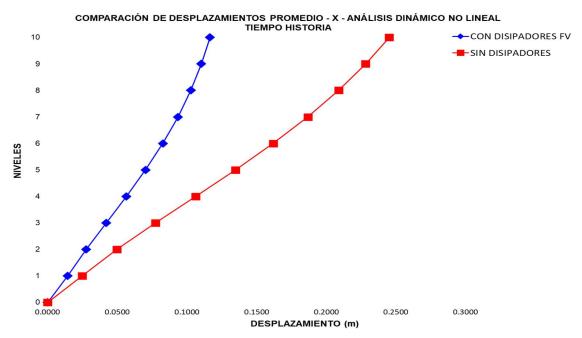

Nota: La figura compara los desplazamientos en la dirección X. Las líneas punteadas representan los desplazamientos con TADAS, mientras que las líneas continuas muestran los desplazamientos sin disipadores. Se observa que los desplazamientos con disipadores son significativamente menores, lo que evidencia la efectividad de los TADAS en reducir las deformaciones y mejorar la estabilidad estructural frente a sismos. Fuente: Elaboración propia.

Tabla 61Resumen de desplazamientos promedio en X de la estructura sin y con disipadores TADAS

Nivel	Sin disipadores dx (m)	Con disipadores de TADAS dx (m)	Reducción (%)
10	0,2451	0,1717	30
09	0,2283	0,1615	29
08	0,2088	0,1473	29
07	0,1867	0,1315	30
06	0,1619	0,1142	29
05	0,1349	0,0957	29
04	0,1064	0,0764	28
03	0,0775	0,0571	26
02	0,0498	0,0384	23
01	0,0250	0,0212	15

Nota: La tabla presenta un resumen comparativo de las derivas promedio en una estructura con y sin disipadores TADAS. Se observa que la implementación de los disipadores reduce significativamente las derivas en todos los niveles, con reducciones que varían entre el 15% y el 30%. Este análisis demuestra la eficacia de los disipadores TADAS en mejorar el comportamiento sísmico de la estructura, minimizando las deformaciones y aumentando la seguridad estructural. Fuente: Elaboración propia.

Figura 82Comparación de desplazamientos promedio en X sin y con disipadores TADAS

Nota: La figura compara los desplazamientos promedio en la dirección X de la estructura con y sin el uso de disipadores TADAS. Los resultados muestran que la incorporación de los disipadores TADAS reduce significativamente los desplazamientos a lo largo de los niveles, mejorando la rigidez y el control de la estructura frente a cargas sísmicas. Esto evidencia la efectividad de los disipadores TADAS en minimizar las deformaciones, contribuyendo a una mayor estabilidad y seguridad de la edificación durante eventos sísmicos. Fuente: Elaboración propia.

4.2.2.2.3 Derivas

Tabla 62Derivas máximas ΔX de la estructura

Derivas	s ∆x del aná	ilisis dinán	nico no lin	eal tiempo	– historia	X – sin dis	ipadores
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	ΔX
	$\Delta \mathbf{X}$	$\Delta \mathbf{\Lambda}$					
10	0,0051	0,0043	0,0028	0,0042	0,0049	0,0043	0,0043
09	0,0057	0,0051	0,0036	0,0052	0,0058	0,0051	0,0051
08	0,0064	0,0058	0,0043	0,0061	0,0066	0,0058	0,0058
07	0,0071	0,0064	0,0051	0,0070	0,0074	0,0064	0,0066
06	0,0074	0,0070	0,0059	0,0077	0,0080	0,0070	0,0072
05	0,0078	0,0073	0,0064	0,0081	0,0083	0,0073	0,0075
04	0,0077	0,0073	0,0068	0,0082	0,0083	0,0073	0,0076
03	0,0075	0,0069	0,0068	0,0078	0,0080	0,0069	0,0073
02	0,0068	0,0061	0,0061	0,0071	0,0071	0,0061	0,0066
01	0,0055	0,0048	0,0050	0,0058	0,0057	0,0048	0,0053

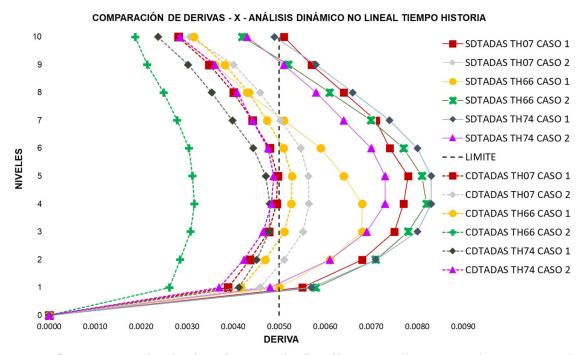

Nota: Los valores reflejan las derivas en cada nivel de la estructura para diversos registros sísmicos, proporcionando una visión del comportamiento estructural sin disipadores. El promedio final permite comparar la eficacia sin disipadores y posteriormente con disipadores al sistema estructural. Fuente: Elaboración propia.

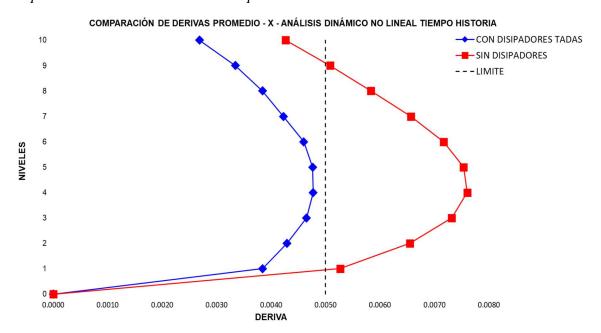
Tabla 63Derivas máximas ΔX de la estructura con disipadores TADAS

Der	ivas ∆x del	análisis di	námico no	lineal tien	1po — histo	ria X – TA	ADAS
	TH07	TH07	TH66	TH66	TH74	TH74	Duamadia
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	Promedio ΔX
	$\Delta \mathbf{X}$	ΔΛ					
10	0,0028	0,0031	0,0031	0,0019	0,0024	0,0028	0,0027
09	0,0035	0,0040	0,0038	0,0021	0,0030	0,0036	0,0033
08	0,0040	0,0046	0,0043	0,0025	0,0035	0,0041	0,0038
07	0,0044	0,0050	0,0047	0,0028	0,0040	0,0044	0,0042
06	0,0048	0,0055	0,0051	0,0030	0,0044	0,0048	0,0046
05	0,0050	0,0056	0,0053	0,0031	0,0047	0,0049	0,0048
04	0,0049	0,0056	0,0053	0,0032	0,0048	0,0048	0,0048
03	0,0048	0,0055	0,0051	0,0031	0,0048	0,0047	0,0047
02	0,0044	0,0051	0,0047	0,0029	0,0045	0,0042	0,0043
01	0,0039	0,0046	0,0042	0,0026	0,0041	0,0037	0,0038

Nota: La tabla muestra los resultados del análisis dinámico no lineal en la dirección X para una estructura con disipadores TADAS. Los promedios de las derivas por nivel, en la última columna, reflejan una reducción significativa en las deformaciones, con todos los valores por debajo del límite conservador de 0,005. Fuente: Elaboración propia.

Figura 83Comparación de derivas máximas ΔX

Nota: La figura compara los desplazamientos en la dirección X. Las líneas punteadas representan los desplazamientos con TADAS, mientras que las líneas continuas muestran los desplazamientos sin disipadores. Se observa que los desplazamientos con disipadores son significativamente menores, lo que evidencia la efectividad de los TADAS en reducir los desplazamientos y mejorar la estabilidad estructural frente a sismos. Fuente: Elaboración propia.


Tabla 64Resumen de derivas máximas ΔX promedio de la estructura sin y con disipadores TADAS

Nivel	Sin disipadores ΔX	Con disipadores TADAS ΔX	Reducción (%)
10	0,0043	0,0027	37
09	0,0051	0,0033	34
08	0,0058	0,0038	34
07	0,0066	0,0042	36
06	0,0072	0,0046	36
05	0,0075	0,0048	37
04	0,0076	0,0048	37
03	0,0073	0,0047	36
02	0,0066	0,0043	34
01	0,0053	0,0038	27

Nota: La tabla presenta un resumen comparativo de las derivas promedio en una estructura sin y con disipadores TADAS. Se observa que la implementación de los disipadores reduce significativamente las derivas en todos los niveles, con reducciones que varían entre el 27% y el 37%. Este análisis demuestra la eficacia de los disipadores TADAS en mejorar el comportamiento sísmico de la estructura, minimizando las deformaciones y aumentando la seguridad estructural. Fuente: Elaboración propia.

Figura 84

Comparación de derivas máximas ΔX promedio

Nota: La figura muestra una comparación de las derivas promedio en la dirección X obtenidas del análisis dinámico no lineal tiempo-historia sin y con disipadores TADAS. Las derivas correspondientes a la estructura sin disipadores (línea roja) superan consistentemente el límite de 0,005; mientras que las derivas de la estructura con disipadores TADAS (línea azul) se mantienen por debajo de este umbral. Fuente: Elaboración propia.

4.2.2.2.4 Fuerza cortante

Tabla 65Fuerza cortante Vx de la estructura

Fuerz	a cortante (del análisis (dinámico n	o lineal tie	mpo – histo	oria X – sin	disipador
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	(Tonf)
	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(10111)
10	1948,56	1787,47	2033,15	2266,64	1698,89	2154,26	1981,50
09	3735,72	3453,84	3388,44	4025,32	3065,79	3697,58	3561,11
08	5369,35	4921,56	4276,72	5290,83	4136,14	4860,84	4809,24
07	6818,71	6233,98	5091,02	5954,92	5003,77	6081,51	5863,98
06	7986,65	7387,05	6090,99	6067,65	5844,28	7269,39	6774,33
05	8765,91	8291,20	6963,86	6521,20	6699,57	8366,85	7601,43
04	9159,08	8942,16	7610,24	7237,09	7605,96	9173,42	8287,99
03	9225,99	9453,41	8164,53	7805,07	8255,05	9777,14	8780,20
02	9007,44	9930,25	8670,59	8220,51	8488,73	10193,49	9085,17
01	8836,08	10285,39	9025,19	8475,73	8324,59	10416,33	9227,22

Nota: La tabla presenta las fuerzas cortantes en la dirección Vx para una estructura sin disipadores, obtenidos del análisis dinámico no lineal en el tiempo. Los promedios permiten evaluar la demanda sísmica por nivel y facilitarán comparaciones o decisiones de diseño para mejorar la respuesta sísmica de la estructura. Fuente: Elaboración propia.

Tabla 66Fuerza cortante Vx de la estructura con disipadores TADAS

Fuer	za cortante	del análisis	s dinámico 1	no lineal ti	empo –histo	oria X– con	TADAS
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	(Tonf)
	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(10111)
10	2251,55	2689,52	2068,65	1716,90	1548,47	1881,62	2026,12
09	4159,97	5157,48	3867,76	2923,12	2907,85	3622,80	3773,16
08	5803,57	7475,95	5402,14	3991,81	4267,25	5254,75	5365,91
07	7209,51	9596,47	7020,74	5255,23	5539,63	6794,67	6902,71
06	8775,37	11286,64	8390,91	6279,05	6687,11	8137,07	8259,36
05	10129,00	12637,54	9576,48	7309,18	7868,90	9264,11	9464,20
04	11426,23	13847,68	10726,54	8077,08	8959,74	10265,31	10550,43
03	12507,44	14736,47	11629,90	9063,92	9893,09	10974,01	11467,47
02	12971,93	14969,74	11943,50	9649,22	10342,05	11253,32	11854,96
01	13004,97	14685,19	11794,22	9747,53	10346,64	11060,96	11773,25

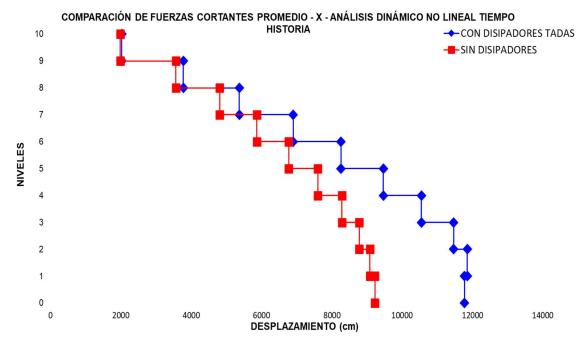

Nota: La tabla presenta las fuerzas cortantes en la dirección Vx obtenidos del análisis dinámico no lineal tiempo – historia, para una estructura equipada con disipadores TADAS. Los resultados, desglosados por nivel y por diferentes casos de historia sísmica (TH07, TH66, TH74), muestran cómo la incorporación de los disipadores reduce significativamente las fuerzas cortantes en comparación con una estructura sin disipadores. Los valores promedio en la última columna permiten evaluar la eficiencia de los disipadores en la reducción de la demanda sísmica, contribuyendo a un diseño estructural más seguro y resiliente. Fuente: Elaboración propia.

Tabla 67Resumen de cortantes Vx promedio de la estructura sin y con disipador TADAS

Nivel	Sin disipadores (Tonf)	Con disipadores de TADAS (Tonf)	Aumenta (%)
10	1981,50	2026,12	2
09	3561,11	3773,16	6
08	4809,24	5365,91	12
07	5863,98	6902,71	18
06	6774,33	8259,36	22
05	7601,43	9464,20	25
04	8287,99	10550,43	27
03	8780,20	11467,47	31
02	9085,17	11854,96	30
01	9227,22	11773,25	28

Nota: La tabla muestra un resumen de las fuerzas cortantes promedio en la dirección X de una estructura, comparando los resultados con y sin el uso de disipadores TADAS. Se observa un incremento considerable en las fuerzas cortantes al implementar los disipadores, con aumentos que oscilan entre el 2% y el 31% en todos los niveles. Este incremento se atribuye a la mayor rigidez proporcionada por los disipadores TADAS, lo que resulta en un aumento de las fuerzas inerciales durante un evento sísmico. Fuente: Elaboración propia.

Figura 85Comparación de fuerzas cortantes Vx promedio

Nota: La figura compara las fuerzas cortantes promedio en la dirección X de una estructura con y sin el uso de disipadores TADAS, basado en un análisis dinámico no lineal en el tiempo. Se observa que las fuerzas cortantes son mayores en la estructura que incorporan los disipadores TADAS, lo que refleja el aumento en la rigidez estructural que aportan estos dispositivos. Fuente: Elaboración propia.

4.2.2.2.5 Aceleración

 Tabla 68

 Aceleraciones máximas de la estructura

Acelo	eraciones d	el análisis d	inámico no	lineal tiem	po — histor	ria X – sin o	disipador
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	(m/sec2)
	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(111/8602)
10	10,8693	10,4845	9,5208	10,9258	10,9936	12,4244	10,8697
09	9,7027	9,3461	7,9268	8,7325	7,8682	9,9016	8,9130
08	8,9671	8,3974	6,8966	8,1931	6,8533	7,1977	7,7509
07	7,8902	7,4991	6,0921	7,7840	6,6328	5,8263	6,9541
06	6,3071	6,3577	5,9358	7,1606	5,7855	5,3280	6,1458
05	5,0331	5,5038	5,8997	6,7977	5,1516	5,4658	5,6420
04	5,2877	4,9336	7,1030	6,0194	6,8253	5,7002	5,9782
03	5,5234	4,6766	7,2141	6,5292	7,2357	5,5452	6,1207
02	5,2606	4,4097	7,5282	6,0672	6,5784	5,3439	5,8647
01	4,6333	3,9896	7,6291	5,4611	5,4547	4,9939	5,3603

Nota: La tabla muestra las aceleraciones máximas de la estructura en diferentes niveles sin el uso de disipadores, obtenidas a partir de un tiempo – historia. Se evaluaron tres historias sísmicas (TH07, TH66, TH74), y se observa que las aceleraciones disminuyen desde los niveles superiores hacia los inferiores. El promedio de aceleración por nivel proporciona una visión general del comportamiento estructural bajo estas condiciones. Fuente: Elaboración propia.

Tabla 69Aceleraciones máximas de la estructura con disipadores TADAS

Aceleraciones del análisis dinámico no lineal tiempo – historia X – con TADAS					TADAS		
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	(m/sec2)
	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(III/Sec2)
10	11,3336	15,1936	13,0690	9,6058	9,3405	11,9167	11,7432
09	9,9165	13,9124	12,0672	8,1943	8,4378	10,5468	10,5125
08	9,4680	12,6034	10,6723	7,6904	7,9572	9,6385	9,6716
07	8,9615	11,1319	9,1608	7,6669	7,6207	8,7901	8,8887
06	9,0709	9,7297	7,9023	6,9378	7,1421	7,4975	8,0467
05	8,9191	8,3884	6,4868	6,2688	6,4428	6,2046	7,1184
04	8,2850	7,2750	6,0054	4,9982	5,5250	5,1940	6,2138
03	7,1965	6,0615	5,6509	5,2656	4,7423	4,8303	5,6245
02	5,8155	4,9005	6,0736	5,3571	3,6542	5,1161	5,1528
01	4,5188	3,7894	6,0629	5,1515	3,4853	4,9994	4,6679

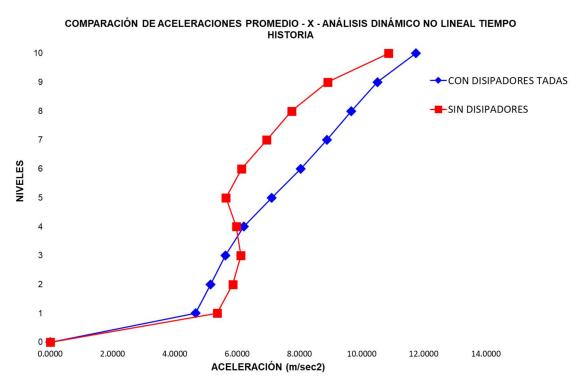

Nota: La tabla presenta las aceleraciones máximas en los distintos niveles de la estructura al considerar el uso de TADAS durante un análisis tiempo – historia. Los resultados muestran las respuestas de la estructura bajo tres historias sísmicas (TH07, TH66, TH74) en dos casos para cada una. Al comparar con los datos sin TADAS, se puede evaluar la efectividad de los disipadores en reducir las aceleraciones en cada nivel. El promedio de las aceleraciones por nivel ofrece una visión general del impacto positivo de los SLB en la mitigación de la respuesta sísmica. Fuente: Elaboración propia.

Tabla 70			
Resumen de aceleraciones ((m/sec2) promedio	o en X de la estruc	tura sin y con TADAS

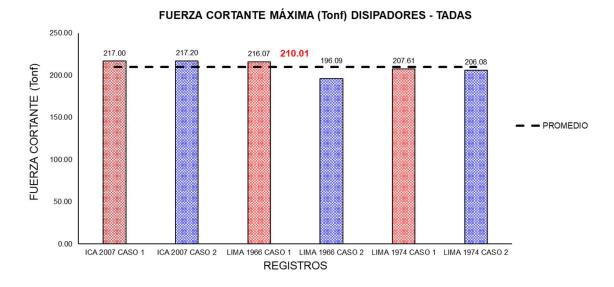
Nivel	Sin disipadores (m/sec2)	Con disipadores TADAS (m/sec2)	Porcentaje (%)
10	10,8697	11,7432	8
09	8,9130	10,5125	8
08	7,7509	9,6716	25
07	6,9541	8,8887	28
06	6,1458	8,0467	31
05	5,6420	7,1184	26
04	5,9782	6,2138	4
03	6,1207	5,6245	8
02	5,8647	5,1528	12
01	5,3603	4,6679	13

Nota: La tabla muestra un análisis de las aceleraciones promedio en la dirección X de la estructura sin y con el uso de disipadores TADAS. Se observa que, en los niveles superiores, las aceleraciones aumentan al utilizar los disipadores, lo que a su vez incrementa las fuerzas cortantes en estos niveles. Esto se debe a que los disipadores TADAS aumentan la rigidez de la estructura. Fuente: Elaboración propia.

Figura 86Comparación de aceleraciones (m/sec2) en X promedio

Nota: La figura muestra la comparación de las aceleraciones promedio en la dirección X de una estructura, tanto con cómo sin el uso de disipadores TADAS, basándose en un análisis dinámico no lineal tiempo-historia. Se observa que, en los niveles inferiores, el uso de disipadores TADAS resulta en una reducción significativa de las aceleraciones, lo que indica un mejor control de las vibraciones sísmicas. Sin embargo, en los niveles superiores, las aceleraciones son mayores cuando se emplean los disipadores, lo que sugiere que la adición de rigidez ha llevado a una respuesta más intensa en estos niveles. Fuente: Elaboración propia.

4.2.2.2.6 Curva histerética


 Tabla 71

 Resultados de fuerza cortante y desplazamiento máximo

Registro	Fuerza cortante (Tonf)	Desplazamiento (cm)
Ica 2007 caso 1	217,00	0,71
Ica 2007 caso 2	217,20	0,71
Lima 1966 caso 1	216,07	0,70
Lima 1966 caso 2	196,09	0,42
Lima 1974 caso 1	207,61	0,58
Lima 1974 caso 2	206,08	0,56
Promedio	210,01	0,62

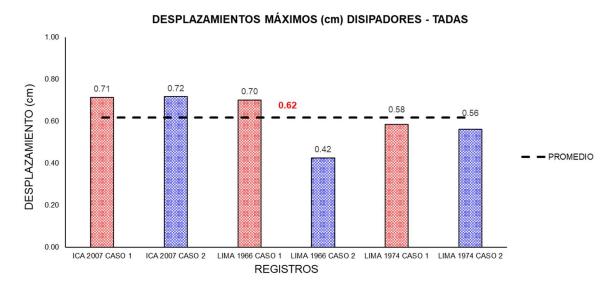

Nota: La tabla muestra los resultados que el disipador TADAS tiene un rendimiento consistente bajo diferentes escenarios sísmicos, con una fuerza cortante máxima promedio de 210,01 toneladas-fuerza y un desplazamiento promedio de 0,62 cm. Estos valores reflejan la capacidad del disipador para manejar grandes cantidades de energía sísmica, contribuyendo a la estabilidad y seguridad de la estructura durante eventos sísmicos de diversas magnitudes. Fuente: Elaboración propia.

Figura 87
Fuerza cortante máximas con los disipadores TADAS

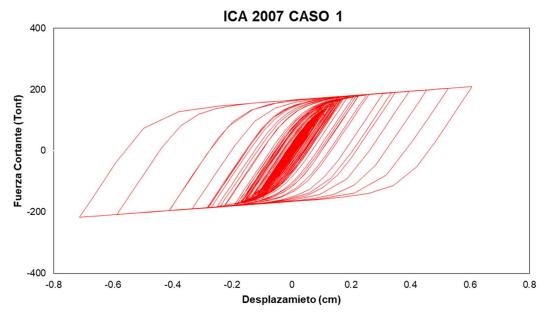

Nota: La figura muestra las fuerzas cortantes máximas alcanzadas con los disipadores TADAS bajo diferentes registros sísmicos, con valores que oscilan entre 196,09 tonf y 217,20 tonf. El promedio de estas fuerzas cortantes es de 210,01 tonf, lo que destaca la capacidad consistente de los disipadores TADAS para soportar y mitigar las demandas sísmicas significativas. Este comportamiento es crucial para garantizar la integridad estructural y reducir el riesgo de daños durante eventos sísmicos. Fuente: Elaboración propia.

Figura 88Desplazamientos máximos con los disipadores TADAS

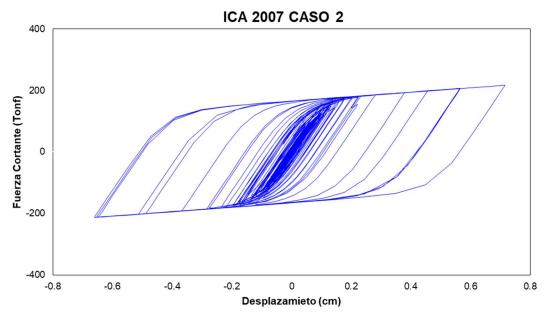

Nota: Los desplazamientos máximos alcanzados por los disipadores TADAS bajo los registros sísmicos seleccionados oscilan entre 0,42 cm y 0,72 cm. El promedio de estos desplazamientos es de 0,62 cm. Este análisis evidencia la capacidad de los disipadores TADAS para manejar deformaciones significativas bajo eventos sísmicos, asegurando un comportamiento estructural seguro y controlado. Fuente: Elaboración propia.

Figura 89Curva histerética con disipador TADAS – Ica 2007 caso 1

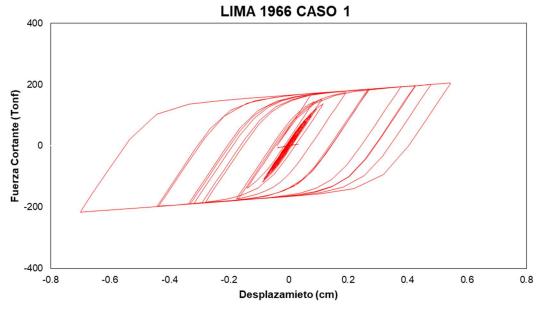

Nota: La curva histerética generada para el disipador TADAS bajo el sismo de Ica 2007 en el caso 1 muestra una fuerza cortante máxima de 217,00 toneladas-fuerza (tonf) con un desplazamiento máximo de 0,71 cm. Esta curva evidencia la capacidad del disipador para captar y disipar la energía generada por el sismo, lo cual es esencial para disminuir la demanda sísmica en la estructura y la mitigación de posibles daños. Fuente: Elaboración propia.

Figura 90Curva histerética con disipador TADAS – Ica 2007 caso 2

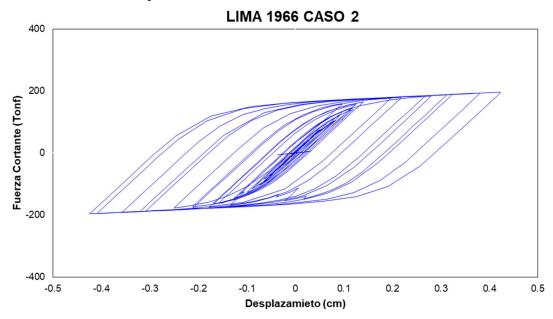

Nota: La curva histerética generada para el disipador TADAS bajo el sismo de Ica 2007 en el caso 2 muestra una fuerza cortante máxima de 217,20 toneladas-fuerza (tonf) con un desplazamiento máximo de 0,72 cm. Esta curva evidencia la capacidad del disipador para captar y disipar la energía generada por el sismo, lo cual es esencial para disminuir la demanda sísmica en la estructura y la mitigación de posibles daños. Fuente: Elaboración propia.

Figura 91Curva histerética con disipador TADAS – Lima 1966 caso 1

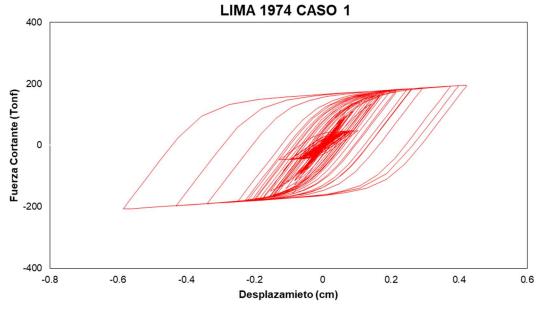

Nota: La curva histerética generada para el disipador TADAS bajo el sismo de Lima 1966 en el caso 1 muestra una fuerza cortante máxima de 216,07 toneladas-fuerza (tonf) con un desplazamiento máximo de 0,70 cm. Esta curva evidencia la capacidad del disipador para captar y disipar la energía generada por el sismo, lo cual es esencial para disminuir la demanda sísmica en la estructura y la mitigación de posibles daños. Fuente: Elaboración propia.

Figura 92Curva histerética con disipador TADAS – Lima 1966 caso 2

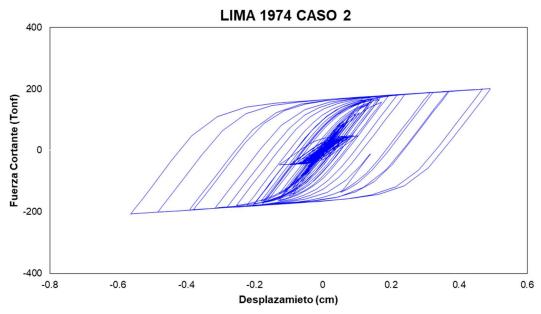

Nota: La curva histerética generada para el disipador TADAS bajo el sismo de Lima 1966 en el caso 2 muestra una fuerza cortante máxima de 196,09 toneladas-fuerza (tonf) con un desplazamiento máximo de 0,42 cm. Esta curva evidencia la capacidad del disipador para captar y disipar la energía generada por el sismo, lo cual es esencial para disminuir la demanda sísmica en la estructura y la mitigación de posibles daños. Fuente: Elaboración propia.

Figura 93Curva histerética con disipador TADAS – Lima 1974 caso 1

Nota: La curva histerética generada para el disipador TADAS bajo el sismo de Lima 1974 en el caso 1 muestra una fuerza cortante máxima de 207,61 toneladas-fuerza (tonf) con un desplazamiento máximo de 0,58 cm. Esta curva evidencia la capacidad del disipador para captar y disipar la energía generada por el sismo, lo cual es esencial para disminuir la demanda sísmica en la estructura y la mitigación de posibles daños. Fuente: Elaboración propia.

Figura 94Curva histerética con disipador TADAS – Lima 1974 caso 2

Nota: La curva histerética generada para el disipador TADAS bajo el sismo de Lima 1974 en el caso 2 muestra una fuerza cortante máxima de 206,08 toneladas-fuerza (tonf) con un desplazamiento máximo de 0,56 cm. Esta curva evidencia la capacidad del disipador para captar y disipar la energía generada por el sismo, lo cual es esencial para disminuir la demanda sísmica en la estructura y la mitigación de posibles daños. Fuente: Elaboración propia.

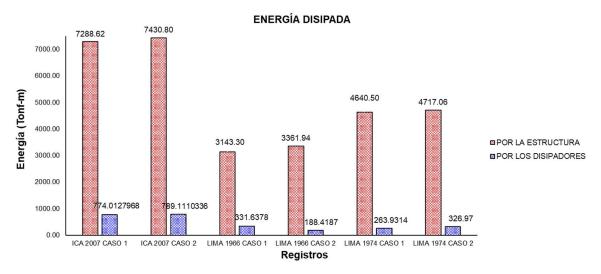

4.2.2.2.7 Balance energético

Tabla 72Distribución de energía disipada por la estructura y por los disipadores TADAS

Registro	Energía de entrada	Energía di la estri		Energía disipada por los disipadores TADAS	
	(tonf-m)	(tonf-m)	(%)	(tonf-m)	(%)
Ica 2007 Caso 1	8062,63	7288,62	90,40	774,01	10
Ica 2007 Caso 2	8219,91	7430,80	90,40	789,11	10
Lima 66 Caso 1	3475,07	3143,30	90,45	331,64	9,54
Lima 66 Caso 2	3550,46	3361,94	94,69	188,42	5,31
Lima 74 Caso 1	4904,62	4640,50	94,61	263,93	5,38
Lima 74 Caso 2	5044,20	4717,06	93,51	326,97	6,48
Promedio	5542,81	5097,03	92,35	445,68	7,65

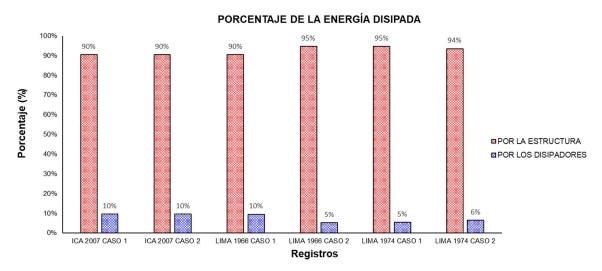

Nota: La tabla muestra un análisis comparativo de la energía disipada por la estructura y por los disipadores TADAS en diferentes registros sísmicos (Ica 2007, Lima 66, Lima 74) bajo distintos casos. Se observa que, en promedio, el 92,35% de la energía es disipada por la estructura, mientras que los disipadores TADAS contribuyen con la disipación del 7,65% de la energía total. Estos resultados destacan la eficiencia de los disipadores en la mitigación de los efectos sísmicos, complementando la capacidad de la estructura para absorber energía. Fuente: Elaboración propia.

Figura 95 *Energía disipada por la estructura y por el disipador TADAS*

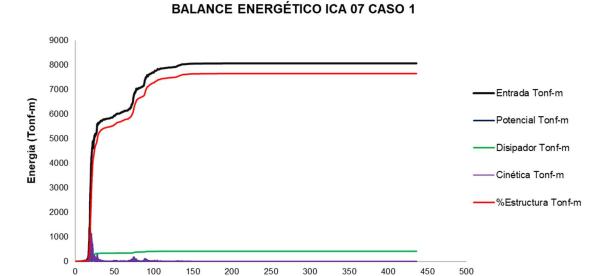
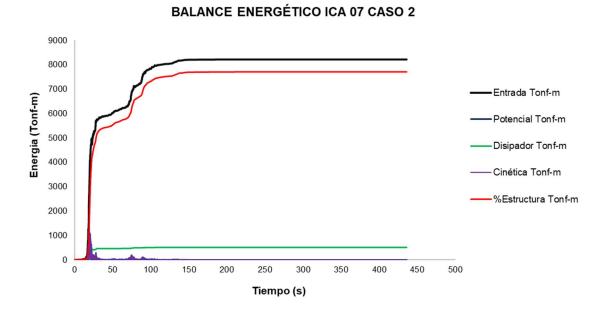

Nota: La figura muestra la comparación de la energía disipada por la estructura y por los disipadores TADAS. Los resultados evidencian que, al incorporar los disipadores TADAS, se incrementa la rigidez de la estructura, lo que permite que esta disipe una mayor cantidad de energía. Esta mejora en la disipación de energía indica que los disipadores TADAS no solo contribuyen a reducir las vibraciones y desplazamientos, sino que también fortalecen la capacidad de la estructura para manejar las cargas sísmicas, optimizando su desempeño durante eventos sísmicos. Fuente: Elaboración propia.

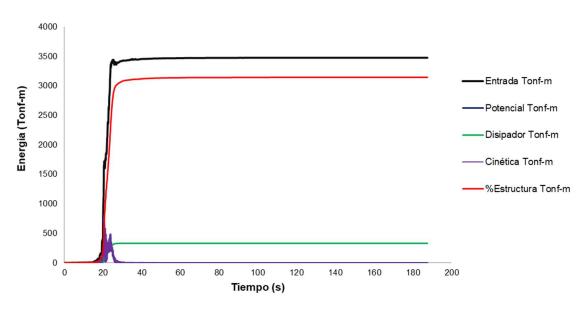
Figura 96Porcentaje de energía disipada por la estructura y por el disipador TADAS

Nota: La figura muestra el porcentaje de energía disipada por la estructura y por los disipadores TADAS. Los resultados reflejan que, al aumentar la rigidez de la estructura con los disipadores TADAS, la estructura disipa un mayor porcentaje de energía durante eventos sísmicos. Este comportamiento evidencia la efectividad de los disipadores TADAS en mejorar el control de las vibraciones y reducir las deformaciones, optimizando así la respuesta sísmica del edificio. Fuente: Elaboración propia.


Figura 97Balance energético de la estructura bajo el registro sísmico de Ica 2007 - caso 1

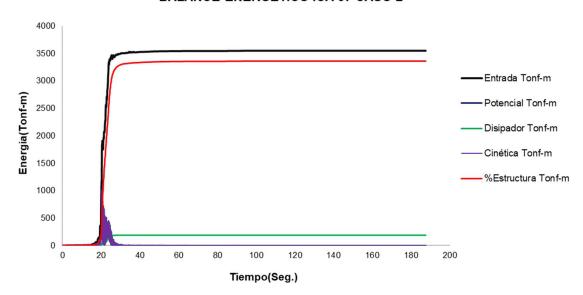
Nota: Se observa un balance energético adecuado en la estructura bajo el sismo de Ica 2007 - caso 1, con una efectiva absorción de energía por los TADAS, lo que contribuye a la estabilidad estructural. Fuente: Elaboración propia.

Tiempo (s)


Figura 98Balance energético de la estructura bajo el registro sísmico de Ica 2007 - caso 2

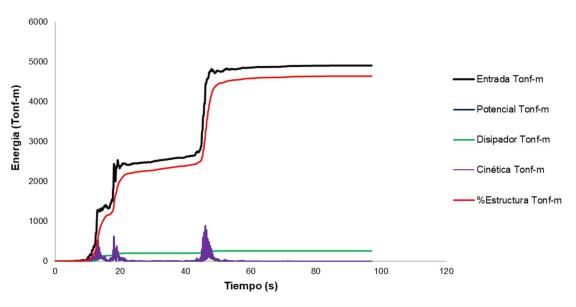
Nota: Se observa un balance energético adecuado en la estructura bajo el sismo de Ica 2007 - caso 2, con una efectiva absorción de energía por los TADAS, lo que contribuye a la estabilidad estructural. Fuente: Elaboración propia.

Figura 99Balance energético de la estructura bajo el registro sísmico de Lima 66 - caso 1



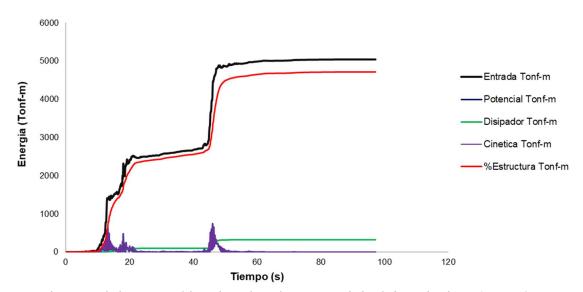
Nota: Se observa un balance energético adecuado en la estructura bajo el sismo de Lima 66 - caso 1, con una efectiva absorción de energía por los TADAS, lo que contribuye a la estabilidad estructural. Fuente: Elaboración propia.

Figura 100Balance energético de la estructura bajo el registro sísmico de Lima 66 - caso 2


BALANCE ENERGÉTICO ICA 07 CASO 2

Nota: Se observa un balance energético adecuado en la estructura bajo el sismo de Lima 66 - caso 2, con una efectiva absorción de energía por los TADAS, lo que contribuye a la estabilidad estructural. Fuente: Elaboración propia.

Figura 101Balance energético de la estructura bajo el registro sísmico de Lima 74 - caso 1



Nota: Se observa un balance energético adecuado en la estructura bajo el sismo de Lima 74 - caso 1, con una efectiva absorción de energía por los TADAS, lo que contribuye a la estabilidad estructural. Fuente: Elaboración propia.

Figura 102Balance energético de la estructura bajo el registro sísmico de Lima 74 - caso 2

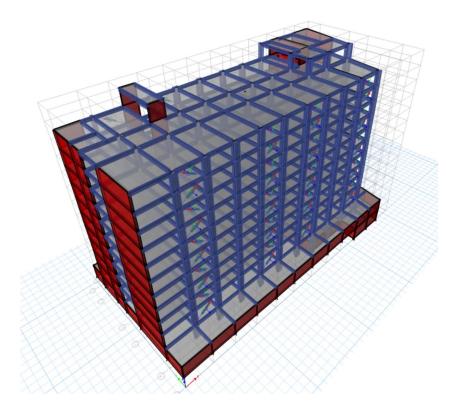
BALANCE ENERGÉTICO LIMA 74 CASO 2

Nota: Se observa un balance energético adecuado en la estructura bajo el sismo de Lima 74 - caso 2, con una efectiva absorción de energía por los TADAS, lo que contribuye a la estabilidad estructural. Fuente: Elaboración propia.

4.2.2.2.8 Costo del disipador

En la Tabla 73 se detalla el costo referencial de la implementación de los disipadores TADAS, donde se especifica la cantidad, precio unitario y costo parcial para cada tipo de disipador. El costo total estimado para la instalación de los disipadores TADAS es de 440,000.00 dólares, basado en las especificaciones de cada modelo.

Tabla 73Costo de implementación de disipadores TADAS


Tipo	Cantidad	Precio unitario (\$)	Parcial (\$)
TADAS-I	8	4 500,00	36 000,00
TADAS-II	8	5 000,00	40 000,00
TADAS-III	8	5 500,00	44 000,00
TADAS-IV	8	6 000,00	48 000,00
TADAS-V	16	6 500,00	104 000,00
TADAS-VI	24	7 000,00	168 000,00
	Costo total		440 000,00

Fuente: Elaboración propia.

4.2.2.3 Fluido Viscoso

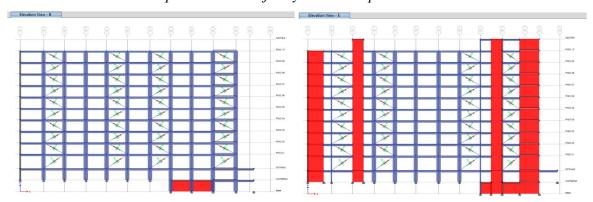

La implementación de disipadores de fluido viscoso en la estructura tiene como objetivo mejorar significativamente la capacidad de disipación de energía durante eventos sísmicos. Estos dispositivos de control pasivo funcionan mediante la resistencia generada por el movimiento de un pistón a través de un fluido viscoso, convirtiendo la energía cinética en calor y reduciendo así las vibraciones y desplazamientos. Al integrarse estratégicamente en la edificación, los disipadores de fluido viscoso proporcionan un amortiguamiento adicional que mejora la estabilidad lateral de la estructura, adaptándose eficientemente a un amplio rango de frecuencias y niveles de energía. Esta capacidad de respuesta dinámica optimizada garantiza no solo la reducción de la demanda sísmica, sino también la preservación de la integridad estructural, asegurando la seguridad y durabilidad del edificio frente a sismos de diversa magnitud.

Figura 103Vista isométrica del edificio incorporando disipadores de Fluido-Viscoso

Nota: En la vista isométrica se aprecian las ubicaciones de los disipadores de fluido viscoso en la estructura. Se modelaron un total de 80 disipadores, distribuidos uniformemente con 8 unidades por cada nivel. La implementación de estos dispositivos tiene como objetivo optimizar el comportamiento sísmico de la edificación al incrementar la capacidad de disipación de energía. Fuente: Elaboración propia.

Figura 104Vista en elevación de los pórticos en el eje B y E con disipadores Fluido Viscoso

Nota: La vista en elevación muestra los pórticos en el eje B y E de la estructura con la implementación de disipadores de fluido viscoso, con cuatro disipadores colocados en cada nivel. Estos elementos están estratégicamente ubicados para mejorar la disipación de energía sísmica y optimizar la respuesta global de la estructura. Fuente: Elaboración propia.

Análisis sísmico implementando disipadores de Fluido Viscoso

Tabla 74Propiedades del material

Fy =	0,018387 m2
ž	•
$\mathbf{E} =$	20400000 tonf/m2
Lx =	6,56 ancho de entrepiso
Ly=	3,55 altura de entrepiso
$\mathbf{K}\mathbf{y} =$	50287,97 tonf/m
Ángulo =	1,07 radianes

Fuente: Elaboración propia.

Tabla 75Derivas del caso vulnerable en X

Registro	TH 74 caso 1
10	0,0049
09	0,0058
08	0,0066
07	0,0074
06	0,0080
05	0,0083
04	0,0083
03	0,0080
02	0,0071
01	0,0057

Nota: Como parte del análisis sísmico utilizando disipadores de fluido viscoso, se ha identificado la máxima deriva en el caso 1 del registro de Lima 1974, máxima deriva es 0,0083 y la deriva objetivo es 0,005. Fuente: Elaboración propia.

Tabla 76Derivas del caso vulnerable en Y

Registro	TH 66 caso 2
10	0,0061
09	0,0063
08	0,0064
07	0,0065
06	0,0064
05	0,0062
04	0,0057
03	0,0050
02	0,0042
01	0,0033

Nota: Como parte del análisis sísmico utilizando disipadores de Fluido viscoso, se ha identificado la máxima deriva en el caso 2 del registro de Lima 1966. Este valor será utilizado para calcular el factor de reducción de respuesta, tomando en cuenta que la máxima deriva es 0,0065 y la deriva objetivo es 0,005. Esta comparación es esencial para evaluar la efectividad del sistema de disipación implementado. Fuente: Elaboración propia.

a) Factor de reducción de respuesta (βx, βy)

$$\beta_{x} = \frac{Dmax}{D.objetivo} = \frac{0.0083}{0.0050} = 1.66$$

$$\beta_y = \frac{Dmax}{D.objetivo} = \frac{0.0065}{0.0050} = 1.30$$

b) Amortiguamiento efectivo (Beff) (%)

$$\beta_x, \beta_y = \frac{2.31 - 0.41 \ln (Bo)}{2.31 - 0.41 \ln (\beta eff)}$$

Donde:

- Bo: Amortiguamiento de la estructura, equivalente al 5%.
- βx, βy: Factores de reducción de la respuesta en las direcciones X y Y, respectivamente.
- βeff x: 25% (Eficiencia de amortiguamiento en la dirección X).
- βeff y: 13% (Eficiencia de amortiguamiento en la dirección Y).

c) Amortiguamiento viscoso (βh x, βh y)

- $\beta h x = \beta eff 5 = 25 5 = 20 \%$
- $\beta h y = \beta eff 5 = 13 5 = 8 \%$

Según las recomendaciones del fabricante, el valor del amortiguamiento adicional proporcionado por los disipadores debería estar en un rango de 20% a 40%, lo cual se cumple en la dirección X. Por lo tanto, ambos valores serán utilizados para el cálculo de las propiedades de los disipadores en la dirección X.

d) Rigidez del brazo metálico (K)

Los brazos metálicos se diseñarán con una configuración mejorada de refuerzos en forma de Chevron, empleando un perfil metálico HSS 20.00 x 0.500, de acuerdo con las especificaciones del AISC Steel Construction Manual, 13ª Edición. Este perfil ha sido seleccionado por su capacidad para proporcionar una combinación óptima de resistencia y rigidez, asegurando un rendimiento superior en aplicaciones estructurales exigentes. Las propiedades técnicas de este perfil son las siguientes:

Tabla 77Dimensiones del perfil round Hss 20,00 x 0,50

Dimensiones ROUND HSS 20.00 x 0.500					
D exterior (pulg)	D interior (pulg)	Espesor (pulg)	Área (pulg²)	Inercia (pulg ⁴)	
20,00	19,535	0,465	28,5	1360	

Nota: La tabla presenta las dimensiones esenciales del perfil Round HSS 20.00 x 0.500 en pulgadas, incluyendo el diámetro exterior, interior, espesor, área e inercia, cruciales para el diseño estructural. Fuente: Elaboración propia.

Tabla 78 *Rigidez lateral Kx y Ky*

Kx	:	50 287,97 tonf/m	
Ky	:	50 287,97 tonf/m	

Fuente: Elaboración Propia.

e) Exponente de velocidad (α) y parámetro lambda

Al considerar el parámetro del exponente de velocidad, es esencial tener en cuenta que el comportamiento debe ser no lineal. Sin embargo, para alcanzar una mayor fuerza de amortiguamiento, se necesitan velocidades elevadas (con exponentes mayores a 1). Aun así, se opta por valores menores a 1, ya que estos permiten trabajar con velocidades más bajas, lo cual es óptimo para reducir los pulsos de alta velocidad generados por un sismo.

Basándose en la norma FEMA 274 de la tabla C9-4, se tendrá un valor de alfa de 0,5 y lambda (3,5).

Tabla 79
Valores de λ respecto α

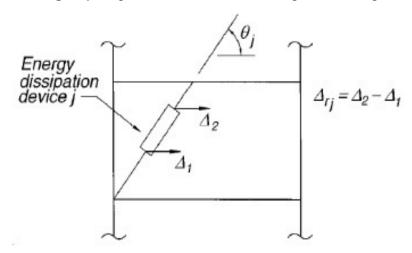
Tabla del parámetro λ				
α	λ			
0,25	3,70			
0,50	3,50			
0,75	3,30			
1,00	3,10			
1,25	3,00			
1,50	2,90			
1,75	2,80			
2,00	2,70			

Nota: La tabla muestra los valores del parámetro λ en función de diferentes valores del exponente α . Fuente: Fema 273-274 (1997).

$$\alpha = 0.50$$
 γ $\lambda = 3.5$

f) Coeficiente de amortiguamiento no lineal

La constante λ, que depende tanto del comportamiento del dispositivo como de las propiedades del fluido utilizado, ha sido determinada conforme a las directrices establecidas por la FEMA 274. Para la disposición de los disipadores en la dirección X, se ha previsto su instalación en los siguientes ejes: B (entre 2 y 3; entre 5 y 6; entre 7 y 8; y entre 10 y 11), y E (entre 2 y 3; entre 4 y 5; entre 8 y 9; y entre 10 y 11). Esta distribución estratégica busca optimizar la eficiencia del sistema de disipación de energía frente a solicitaciones sísmicas.


Tabla 80Notación y parámetros clave para el análisis de estructuras con disipadores viscosos

Sub índice j	:	Representa al disipador
Sub índice i	:	Representa el número de nivel
βh	:	Representa al amortiguamiento viscoso de la superestructura
Cj	:	Representa el coeficiente de amortiguamiento asignado al disipador
mi	:	Representa la masa correspondiente al nivel i
$\Theta \mathbf{j}$:	Representa el ángulo de inclinación del disipador
Φi	:	Representa el desplazamiento en el nivel i del primero modo
Фrj	:	Representa el desplazamiento relativo horizontal del disipador
A	:	Representa la amplitud del desplazamiento del modo fundamental
ω	:	Representa la frecuencia angular
λ	:	Representa el parámetro lambda

Nota: La tabla define las notaciones y parámetros esenciales para el análisis de estructuras con disipadores viscosos, cruciales para evaluar la respuesta dinámica y garantizar la seguridad estructural. Fuente: Elaboración propia.

Figura 105

Determinación del ángulo y desplazamiento relativo del soporte de disipador de energía

Nota: La figura ilustra el método para determinar el ángulo de inclinación (θj) y el desplazamiento relativo $(\Delta r j)$ en los soportes del disipador viscoso, esenciales para su óptimo funcionamiento y mejora de la respuesta sísmica de la estructura. Fuente: Fema 273-274 (1997).

g) Cálculo del coeficiente de cada disipador

Para determinar el coeficiente de cada disipador de fluido viscoso, es fundamental utilizar una fórmula precisa que asegure su correcto dimensionamiento y funcionamiento dentro del sistema estructural.

$$\sum_{i} C_{j} = \frac{\beta h * 2\pi * A^{1-\alpha} * \omega^{2-\alpha} * (\sum_{i} m_{i} \Phi_{i}^{2})}{\lambda (\sum_{i} \Phi_{i}^{1+\alpha} * cos^{1+\alpha} \theta_{j})}$$

Tabla 81Calculo del coeficiente de cada disipador

$\sum Cj$:	14191,85 tonf*s/m
Cix	:	1773,98 tonf*s/m

Fuente: Elaboración propia.

h) Propiedades finales del disipador

En la dirección X, se han determinado los siguientes parámetros clave para el diseño y análisis de los disipadores de fluido viscoso.

Tabla 82Propiedades del disipador

Rigidez del brazo metálico (K)	:	50 287,97 tonf/m
Exponente de velocidad (α)	:	0,50
Coeficiente de amortiguamiento no lineal	:	1 4191,85 tonf*s/m
Cantidad de disipadores por piso	:	1 773,98 tonf*s/m

Fuente: Elaboración propia.

Tabla 83Cálculos generales para el amortiguamiento no lineal del disipador

Nivel	Masa (tonf*s/m2)	Cos θ	Cosθ^1+ α*φrj^1+ α	m	m*φi ^2
10	156,3200	0,4760	0,00090	156,3250	10,1000
09	196,5200	0,4760	0,00110	196,5250	11,0300
08	196,5200	0,4760	0,00133	196,5250	9,1900
07	196,5200	0,4760	0,00156	196,5250	7,3000
06	196,5200	0,4760	0,00175	196,5250	5,4500
05	198,8500	0,4760	0,00186	198,8470	3,8000
04	198,8500	0,4760	0,00187	198,8470	2,3500
03	198,8500	0,4760	0,00175	198,8470	1,2500
02	198,8500	0,4760	0,00146	198,8470	0,5100
01	204,7300	0,4760	0,00139	204,7300	0,1300
	Σ	0,0150			51,1000

4.2.2.3.1 Modos de vibración

Tabla 84 *Modos de vibración sin y con disipadores Fluido Viscoso*

Modo	Sin disipadores Periodo (s)	Con disipadores Periodo (s)	Reducción (%)
1	1,063	1,063	-
2	0,784	0,784	-
3	0,568	0,568	-

Nota: La tabla presenta los períodos de vibración para los tres primeros modos de una estructura, comparando los resultados sin y con la incorporación de disipadores de fluido viscoso. Los datos indican que los períodos de vibración permanecen constantes, lo que sugiere que la introducción de estos disipadores no altera la rigidez dinámica global de la estructura. Esto es consistente con la función principal de los disipadores viscosos, que es disipar la energía sísmica mediante la amortiguación de las vibraciones, sin modificar significativamente las características modales de la estructura. Así, los disipadores mejoran la respuesta sísmica al reducir desplazamientos y aceleraciones, pero sin afectar los períodos de vibración inherentes del sistema. Fuente: Elaboración propia.

4.2.2.3.2 Desplazamientos máximos

Tabla 85Desplazamientos máximos en X de la estructura

despla	zamientos d	el análisis d	inámico no	lineal tiemp	oo – historia	X – sin di	sipador
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	dx (m)
	dx (m)	dx (m)	dx (m)	dx (m)	dx (m)	dx (m)	ux (III)
10	0,2533	0,2365	0,2745	0,2243	0,2170	0,2650	0,2451
09	0,2344	0,2197	0,2550	0,2088	0,2041	0,2477	0,2283
08	0,2126	0,2005	0,2326	0,1908	0,1891	0,2275	0,2088
07	0,1888	0,1787	0,2071	0,1703	0,1715	0,2041	0,1867
06	0,1627	0,1544	0,1789	0,1472	0,1509	0,1773	0,1619
05	0,1350	0,1280	0,1484	0,1222	0,1275	0,1480	0,1349
04	0,1066	0,1003	0,1166	0,0961	0,1018	0,1168	0,1064
03	0,0779	0,0725	0,0847	0,0697	0,0748	0,0853	0,0775
02	0,0503	0,0462	0,0543	0,0445	0,0482	0,0552	0,0498
01	0,0253	0,0230	0,0272	0,0222	0,0242	0,0280	0,0250

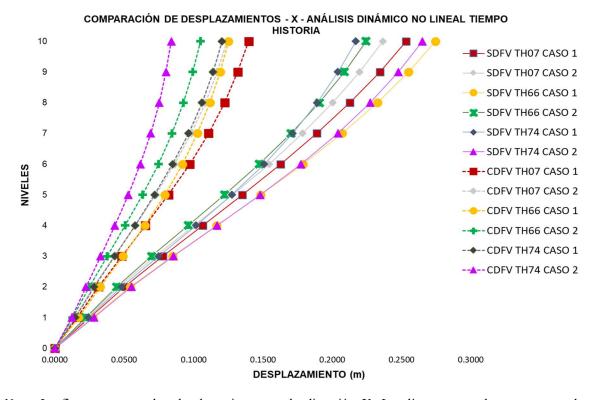

Nota: La tabla presenta los desplazamientos en la dirección X para una estructura sin disipadores, obtenidos del análisis dinámico no lineal en el tiempo. Los promedios de desplazamiento por nivel, en la última columna, ofrecen una visión del comportamiento estructural ante sismos, lo que es esencial para evaluar la necesidad de implementar sistemas de disipación de energía. Fuente: Elaboración propia.

Tabla 86Desplazamientos máximos en X de la estructura con disipadores Fluido Viscoso

Desplaz	amientos dx	(m) del aná	lisis dinámi	ico no lineal	tiempo – h	istoria X –	con DFV
-	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	
	dx (m)	dx (m)	dx (m)	dx (m)	dx (m)	dx (m)	dx (m)
10	0,1398	0,1242	0,1253	0,1051	0,1205	0,0840	0,1165
09	0,1318	0,1170	0,1192	0,0995	0,1140	0,0801	0,1103
08	0,1224	0,1085	0,1118	0,0928	0,1061	0,0753	0,1028
07	0,1109	0,0983	0,1028	0,0845	0,0964	0,0691	0,0937
06	0,0973	0,0863	0,0921	0,0746	0,0848	0,0616	0,0828
05	0,0819	0,0727	0,0793	0,0633	0,0718	0,0529	0,0703
04	0,0653	0,0579	0,0648	0,0508	0,0579	0,0433	0,0567
03	0,0482	0,0426	0,0489	0,0376	0,0430	0,0329	0,0422
02	0,0313	0,0276	0,0326	0,0248	0,0282	0,0224	0,0278
01	0,0160	0,0140	0,0171	0,0128	0,0147	0,0122	0,0145

Nota: La tabla muestra los desplazamientos en la dirección X para una estructura con disipadores de fluido viscoso, evidenciando una reducción significativa en todos los niveles bajo diferentes condiciones sísmicas. Los promedios indican que los disipadores mejoran la estabilidad estructural, reduciendo el riesgo de daño y asegurando la funcionalidad post-sismo. Fuente: Elaboración propia.

Figura 106Desplazamientos máximos en X

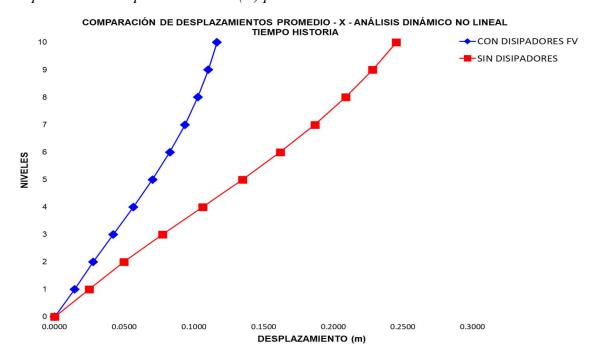

Nota: La figura compara los desplazamientos en la dirección X. Las líneas punteadas representan los desplazamientos con DFV, mientras que las líneas continuas muestran los desplazamientos sin disipadores. Se observa que los desplazamientos con disipadores son significativamente menores, lo que evidencia la efectividad de los DFV en reducir las deformaciones y mejorar la estabilidad estructural frente a sismos. Fuente: Elaboración propia.

Tabla 87Resumen de desplazamientos promedio en X sin y con disipadores Fluido Viscoso

Nivel	Sin disipadores dx (m)	Con disipadores de Fluido Viscoso dx (m)	Reducción (%)
10	0,2451	0,1165	52
09	0,2283	0,1103	52
08	0,2088	0,1028	51
07	0,1867	0,0937	50
06	0,1619	0,0828	49
05	0,1349	0,0703	48
04	0,1064	0,0567	47
03	0,0775	0,0422	46
02	0,0498	0,0278	44
01	0,0250	0,0145	42

Nota: La tabla presenta un resumen comparativo de los desplazamientos promedio en una estructura con y sin DFV. Se observa que la implementación de los disipadores reduce significativamente los desplazamientos en todos los niveles, con reducciones que varían entre el 42% y el 52%. Este análisis demuestra la eficacia de los DFV en mejorar el comportamiento sísmico de la estructura, minimizando las deformaciones y aumentando la seguridad estructural. Fuente: Elaboración propia.

Figura 107Comparación de desplazamientos dx(m) promedio

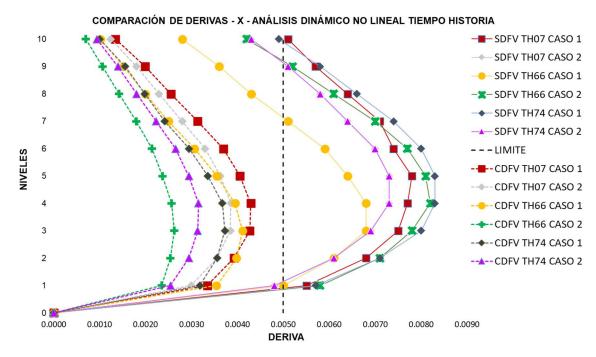
Nota: La figura presenta una comparación de los desplazamientos promedio en la dirección X, obtenidos del análisis dinámico no lineal en el tiempo, para estructuras sin y con DFV. Las líneas azules representan los desplazamientos con disipadores, mientras que las líneas rojas muestran los desplazamientos sin disipadores. Se observa que los desplazamientos con disipadores son considerablemente menores en todos los niveles, lo que demuestra la eficacia de los DFV en reducir las deformaciones y mejorar la estabilidad estructural frente a sismos. Fuente: Elaboración propia.

4.2.2.3.3 Derivas

Tabla 88Derivas máximas ΔX de la estructura

Derivas	s ∆x del aná	ilisis dinán	nico no lin	eal tiempo	– historia	X – sin dis	ipadores
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	ΔX
	$\Delta \mathbf{X}$						
10	0,0051	0,0043	0,0028	0,0042	0,0049	0,0043	0,0043
09	0,0057	0,0051	0,0036	0,0052	0,0058	0,0051	0,0051
08	0,0064	0,0058	0,0043	0,0061	0,0066	0,0058	0,0058
07	0,0071	0,0064	0,0051	0,0070	0,0074	0,0064	0,0066
06	0,0074	0,0070	0,0059	0,0077	0,0080	0,0070	0,0072
05	0,0078	0,0073	0,0064	0,0081	0,0083	0,0073	0,0075
04	0,0077	0,0073	0,0068	0,0082	0,0083	0,0073	0,0076
03	0,0075	0,0069	0,0068	0,0078	0,0080	0,0069	0,0073
02	0,0068	0,0061	0,0061	0,0071	0,0071	0,0061	0,0066
01	0,0055	0,0048	0,0050	0,0058	0,0057	0,0048	0,0053

Nota: La tabla muestra los valores de las derivas en cada nivel de la estructura para diversos registros sísmicos, proporcionando una visión del comportamiento estructural sin disipadores. El promedio final permite comparar la eficacia sin disipadores y posteriormente con disipadores al sistema estructural. Fuente: Elaboración propia.


Tabla 89Derivas máximas ΔX de la estructura con disipadores Fluido Viscoso

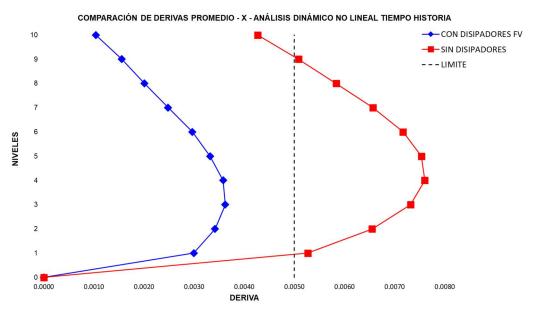
Deriva	s ∆X del an	álisis diná	mico no lir	neal tiempo	o – historia	X – fluide	o viscoso
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	ΔX
	$\Delta \mathbf{X}$	ΔΑ					
10	0,0013	0,0012	0,0010	0,0007	0,0010	0,0009	0,0010
09	0,0020	0,0018	0,0015	0,0011	0,0016	0,0014	0,0016
08	0,0026	0,0023	0,0020	0,0014	0,0020	0,0018	0,0020
07	0,0031	0,0028	0,0025	0,0018	0,0024	0,0022	0,0025
06	0,0037	0,0033	0,0031	0,0021	0,0029	0,0027	0,0030
05	0,0041	0,0036	0,0036	0,0024	0,0034	0,0029	0,0033
04	0,0043	0,0039	0,0039	0,0026	0,0037	0,0031	0,0036
03	0,0043	0,0038	0,0041	0,0026	0,0037	0,0031	0,0036
02	0,0039	0,0036	0,0040	0,0025	0,0036	0,0029	0,0034
01	0,0033	0,0030	0,0035	0,0023	0,0032	0,0025	0,0030

Nota: La tabla muestra los resultados del análisis dinámico no lineal tiempo-historia en la dirección X para una estructura con disipadores de Fluido viscoso. Los promedios de las derivas por nivel, en la última columna, reflejan una reducción significativa en las deformaciones, con todos los valores por debajo del límite conservador de 0,005. Esto evidencia la efectividad de los disipadores de fluido viscoso en mejorar la respuesta sísmica y asegurar la estabilidad y funcionalidad de la estructura ante sismos. Fuente: Elaboración propia.

Figura 108

Comparación de derivas máximas ΔX

Nota: La figura compara los desplazamientos en la dirección X. Las líneas punteadas representan los desplazamientos con DFV, mientras que las líneas continuas muestran los desplazamientos sin disipadores. Se observa que los desplazamientos con disipadores son significativamente menores, lo que evidencia la efectividad de los DFV en reducir los desplazamientos y mejorar la estabilidad estructural frente a sismos. Fuente: Elaboración propia.


Tabla 90Resumen de derivas ΔX promedio de la estructura sin y con disipadores Fluido Viscoso

Nivel	Sin disipadores ∆x	Con disipadores de Fluido Viscoso ∆x	Reducción (%)
10	0,0043	0,0010	76
09	0,0051	0,0016	69
08	0,0058	0,0020	66
07	0,0066	0,0025	62
06	0,0072	0,0030	59
05	0,0075	0,0033	56
04	0,0076	0,0036	53
03	0,0073	0,0036	51
02	0,0066	0,0034	48
01	0,0053	0,0030	43

Nota: La tabla presenta un resumen comparativo de las derivas promedio en una estructura sin y con disipadores de fluido viscoso. Se observa que la implementación de los disipadores reduce significativamente las derivas en todos los niveles, con reducciones que varían entre el 43% y el 76%. Este análisis demuestra la eficacia de los disipadores de fluido viscoso en mejorar el comportamiento sísmico de la estructura, minimizando las deformaciones y aumentando la seguridad estructural. Fuente: Elaboración propia.

Figura 109

Comparación de derivas máximas Δx promedio

Nota: La figura muestra una comparación de las derivas promedio en la dirección X obtenidas del análisis dinámico no lineal en el tiempo para estructuras sin y con DFV Las derivas correspondientes a la estructura sin disipadores (línea roja) superan consistentemente el límite de 0,005, mientras que las derivas de la estructura con disipadores (línea azul) se mantienen por debajo de este umbral. Fuente: Elaboración propia.

4.2.2.3.4 Fuerza cortante

Tabla 91Fuerza cortante Vx de la estructura

Fuerz	a cortante (del análisis (dinámico n	o lineal tie	mpo – histo	oria X – sin	disipador
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	(Tonf)
	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(10111)
10	1948,56	1787,47	2033,15	2266,64	1698,89	2154,26	1981,50
09	3735,72	3453,84	3388,44	4025,32	3065,79	3697,58	3561,11
08	5369,35	4921,56	4276,72	5290,83	4136,14	4860,84	4809,24
07	6818,71	6233,98	5091,02	5954,92	5003,77	6081,51	5863,98
06	7986,65	7387,05	6090,99	6067,65	5844,28	7269,39	6774,33
05	8765,91	8291,20	6963,86	6521,20	6699,57	8366,85	7601,43
04	9159,08	8942,16	7610,24	7237,09	7605,96	9173,42	8287,99
03	9225,99	9453,41	8164,53	7805,07	8255,05	9777,14	8780,20
02	9007,44	9930,25	8670,59	8220,51	8488,73	10193,49	9085,17
01	8836,08	10285,39	9025,19	8475,73	8324,59	10416,33	9227,22

Nota: La tabla presenta las fuerzas cortantes en la dirección Vx para una estructura sin disipadores, obtenidos del análisis dinámico no lineal en el tiempo. Los promedios permiten evaluar la demanda sísmica por nivel y facilitarán comparaciones o decisiones de diseño para mejorar la respuesta sísmica de la estructura. Fuente: Elaboración propia.

Tabla 92Fuerza cortante Vx de la estructura con disipadores Fluido Viscoso

Fue	rza cortant	e del anális	is dinámico	no lineal t	iempo – his	storia X – c	con DFV
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	(Tonf)
	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(Tonf)	(10111)
10	949,33	879,14	1020,54	898,76	1151,01	997,93	982,79
09	1710,29	1503,15	1671,32	1520,87	2001,17	1496,77	1650,59
08	2922,78	2484,94	2440,97	2459,02	3409,76	2079,11	2632,76
07	3894,79	3373,39	3261,93	3226,15	4700,75	2864,42	3553,57
06	4663,37	4141,00	4039,60	3827,19	5829,21	3558,09	4343,08
05	5266,29	4774,58	4844,32	4465,15	6985,13	4113,41	5074,81
04	5765,42	5366,02	5440,11	5036,56	7984,42	4760,42	5725,49
03	6142,31	5591,70	5649,20	5452,77	8582,98	5209,14	6104,68
02	6800,38	5944,24	6097,63	5946,88	9205,70	5803,64	6633,08
01	7780,05	6278,10	6915,60	6664,56	9969,73	6567,18	7362,54

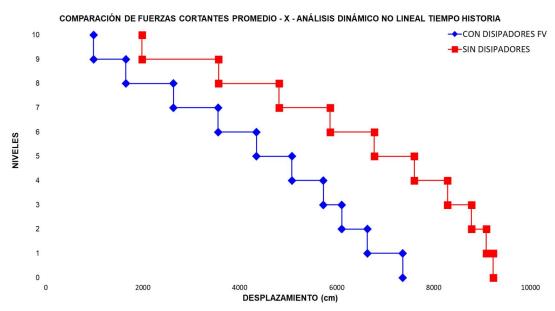

Nota: La tabla presenta las fuerzas cortantes en la dirección Vx obtenidos del análisis dinámico no lineal tiempo – historia, para una estructura equipada con disipadores de fluido viscoso. Los resultados, desglosados por nivel y por diferentes casos de historia sísmica (TH07, TH66, TH74), muestran cómo la incorporación de los disipadores reduce significativamente las fuerzas cortantes en comparación con una estructura sin disipadores. Los valores promedio en la última columna permiten evaluar la eficiencia de los disipadores en la reducción de la demanda sísmica, contribuyendo a un diseño estructural más seguro y resiliente. Fuente: Elaboración propia.

Tabla 93Resumen de cortantes Vx promedio de la estructura sin y con disipadores Fluido Viscoso

Nivel	Sin disipadores (Tonf)	Con disipadores de Fluido Viscoso (Tonf)	Reducción (%)
10	1981,50	982,79	50
09	3561,11	1650,59	54
08	4809,24	2632,76	45
07	5863,98	3553,57	39
06	6774,33	4343,08	36
05	7601,43	5074,81	33
04	8287,99	5725,49	31
03	8780,20	6104,68	30
02	9085,17	6633,08	27
01	9227,22	7362,54	20

Nota: La tabla presenta un resumen comparativo de las fuerzas cortantes Vx promedio en la estructura con y sin disipadores de fluido viscoso. Los datos muestran una reducción significativa en las fuerzas cortantes en todos los niveles cuando se utilizan disipadores, con reducciones que oscilan entre el 20% y el 54%. Este análisis destaca la efectividad de los disipadores de fluido viscoso en mitigar las demandas sísmicas, mejorando la seguridad y el desempeño estructural de la edificación. Fuente: Elaboración propia.

Figura 110Comparación de fuerzas cortantes Vx promedio

Nota: La figura muestra una comparación de las fuerzas cortantes Vx promedio en la dirección X, obtenidas a partir de un análisis dinámico no lineal en el tiempo para una estructura con y sin disipadores de fluido viscoso. Las líneas azules representan las fuerzas cortantes con disipadores, mientras que las líneas rojas corresponden a la estructura sin disipadores. Fuente: Elaboración propia.

4.2.2.3.5 Aceleración

Tabla 94 *Aceleraciones máximas de la estructura*

Acelo	eraciones d	el análisis d	linámico no	lineal tiem	po — histor	ria X – sin o	disipador
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	(m/sec2)
	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(III/SCC2)
10	8,1995	8,1335	9,1255	8,4744	6,5351	7,2954	7,9606
09	7,6448	7,4536	8,8433	7,0890	5,8123	6,4272	7,2117
08	6,9393	6,7546	8,8855	6,6078	5,6530	5,8132	6,7756
07	5,9544	5,9463	8,3377	6,0791	5,5515	5,4152	6,2140
06	5,3006	5,3864	7,2641	5,5764	5,4034	4,8996	5,6384
05	5,7344	5,1324	6,1410	4,9765	4,6202	4,2862	5,1485
04	5,7889	4,7025	5,2931	4,8287	3,8339	3,3906	4,6396
03	5,4192	4,0227	4,7654	5,0083	3,6456	3,4281	4,3816
02	4,8076	3,1264	5,1712	4,5486	3,2172	4,1860	4,1762
01	4,1617	3,0164	5,5194	4,3275	3,3672	4,5116	4,1506

Nota: La tabla muestra las aceleraciones máximas de la estructura en diferentes niveles sin el uso de disipadores de fluido viscoso (DFV), obtenidas a partir del análisis dinámico no lineal tiempo-historia. Se evaluaron tres historias sísmicas (TH07, TH66, TH74), y se observa que las aceleraciones disminuyen desde los niveles superiores hacia los inferiores. El promedio de aceleración por nivel proporciona una visión general del comportamiento estructural bajo estas condiciones. Fuente: Elaboración propia.

Tabla 95Aceleraciones máximas de la estructura con disipadores Fluido Viscoso

Ac	eleraciones	del análisis	s dinámico	no lineal tid	empo – hist	oria X – co	on DFV
	TH07	TH07	TH66	TH66	TH74	TH74	Promedio
Nivel	Caso 1	Caso 2	Caso 1	Caso 2	Caso 1	Caso 2	(m/sec2)
	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(m/sec2)	(III/Sec2)
10	8,1995	8,1335	9,1255	8,4744	6,5351	7,2954	7,9606
09	7,6448	7,4536	8,8433	7,0890	5,8123	6,4272	7,2117
08	6,9393	6,7546	8,8855	6,6078	5,6530	5,8132	6,7756
07	5,9544	5,9463	8,3377	6,0791	5,5515	5,4152	6,2140
06	5,3006	5,3864	7,2641	5,5764	5,4034	4,8996	5,6384
05	5,7344	5,1324	6,1410	4,9765	4,6202	4,2862	5,1485
04	5,7889	4,7025	5,2931	4,8287	3,8339	3,3906	4,6396
03	5,4192	4,0227	4,7654	5,0083	3,6456	3,4281	4,3816
02	4,8076	3,1264	5,1712	4,5486	3,2172	4,1860	4,1762
01	4,1617	3,0164	5,5194	4,3275	3,3672	4,5116	4,1506

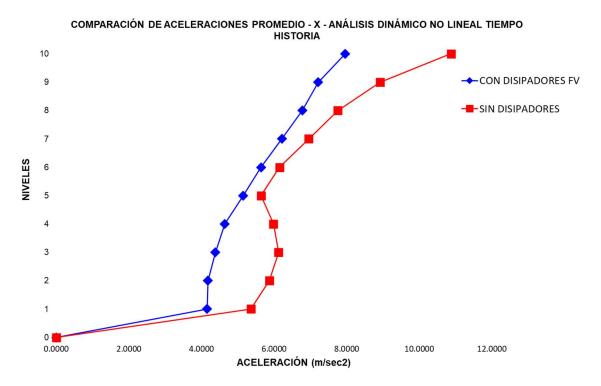

Nota: La tabla presenta las aceleraciones máximas en los distintos niveles de la estructura al considerar el uso de DFV durante un análisis tiempo – historia. Los resultados muestran las respuestas de la estructura bajo tres historias sísmicas (TH07, TH66, TH74) en dos casos para cada una. Al comparar con los datos sin DFV, se puede evaluar la efectividad de los disipadores en reducir las aceleraciones en cada nivel. El promedio de las aceleraciones por nivel ofrece una visión general del impacto positivo de los DFV en la mitigación de la respuesta sísmica. Fuente: Elaboración propia.

Tabla 96Resumen de aceleraciones (m/sec2) promedio en X sin y con disipadores Fluido Viscoso

Nivel	Sin disipadores (m/sec2)	Con disipadores de Fluido Viscoso (m/sec2)	Reducción (%)
10	10,8697	7,9606	27
09	8,9130	7,2117	19
08	7,7509	6,7756	13
07	6,9541	6,2140	11
06	6,1458	5,6384	8
05	5,6420	5,1485	9
04	5,9782	4,6396	22
03	6,1207	4,3816	28
02	5,8647	4,1762	29
01	5,3603	4,1506	23

Nota: La tabla presenta un resumen de las aceleraciones promedio en la dirección X de la estructura, comparando los valores obtenidos sin el uso de DFV con los valores registrados al emplearlos. Además, se incluye un cálculo del porcentaje de reducción de aceleración en cada nivel de la estructura. Los resultados indican que los disipadores de fluido viscoso son efectivos en la reducción de aceleraciones sísmicas, con una disminución notable que varía entre 8% y 29% dependiendo del nivel. Fuente: Elaboración propia.

Figura 111Comparación de aceleraciones (m/sec2) en X promedio

Nota: La figura muestra cómo el uso de DFV reduce significativamente las aceleraciones en todos los niveles de la estructura en comparación con no usarlos, especialmente en los niveles superiores. Esta reducción destaca la eficacia de los DFV en mejorar la respuesta sísmica. Fuente: Elaboración propia.

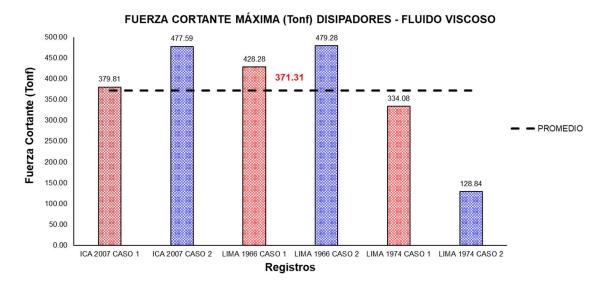
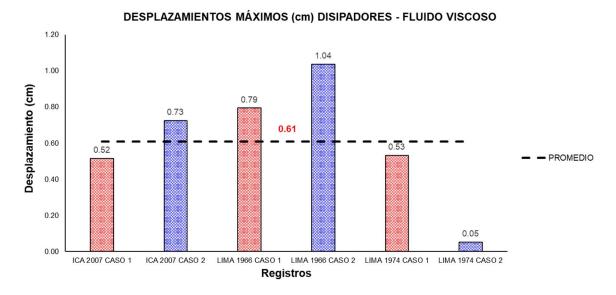

4.2.2.3.6 Curva histerética

Tabla 97Resultados de fuerza cortante y desplazamiento máximo

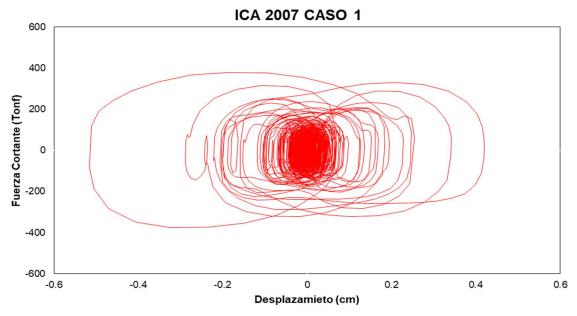
Registro	Fuerza cortante (Tonf)	Desplazamiento (cm)
Ica 2007 caso 1	379,81	0,52
Ica 2007 caso 2	477,59	0,73
Lima 1966 caso 1	428,28	0,79
Lima 1966 caso 2	479,28	1,04
Lima 1974 caso 1	334,08	0,53
Lima 1974 caso 2	128,84	0,05
Promedio	371,31	0,61

Nota: La tabla muestra los resultados que el disipador de Fluido Viscoso tiene un rendimiento consistente bajo diferentes escenarios sísmicos, con una fuerza cortante máxima promedio de 371,31 toneladas-fuerza y un desplazamiento promedio de 0,61 cm. Estos valores reflejan la capacidad del disipador para manejar grandes cantidades de energía sísmica, contribuyendo a la estabilidad y seguridad de la estructura durante eventos sísmicos de diversas magnitudes. Fuente: Elaboración propia.

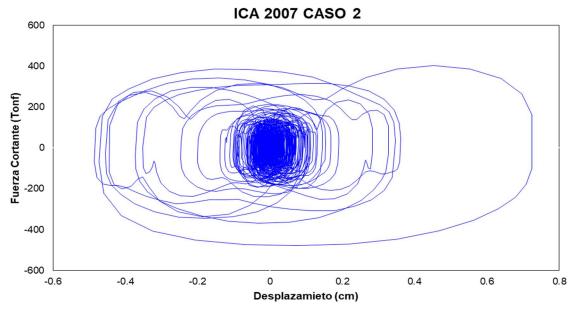

Figura 112
Fuerza cortante máximas con los disipadores – Fluido Viscoso

Nota: La figura muestra las fuerzas cortantes máximas alcanzadas con los disipadores de Fluido Viscoso bajo diferentes registros sísmicos, con valores que oscilan entre 128,84 tonf y 479,28 tonf. El promedio de estas fuerzas cortantes es de 371,31 tonf, lo que destaca la capacidad consistente de los disipadores Fluido Viscoso para soportar y mitigar las demandas sísmicas significativas. Este comportamiento es crucial para garantizar la integridad estructural y reducir el riesgo de daños durante eventos sísmicos. Fuente: Elaboración propia.

Figura 113


Desplazamientos máximos con los disipadores – Fluido Viscoso

Nota: Los desplazamientos máximos alcanzados por los disipadores de Fluido Viscoso bajo los registros sísmicos seleccionados oscilan entre 0,05 cm y 1,04 cm. El promedio de estos desplazamientos es de 0,61 cm. Este análisis evidencia la capacidad de los disipadores de Fluido Viscoso para manejar deformaciones significativas bajo eventos sísmicos, asegurando un comportamiento estructural seguro y controlado. Fuente: Elaboración propia.


Figura 114

Curva histerética con disipador de Fluido Viscoso – Ica 2007 caso 1

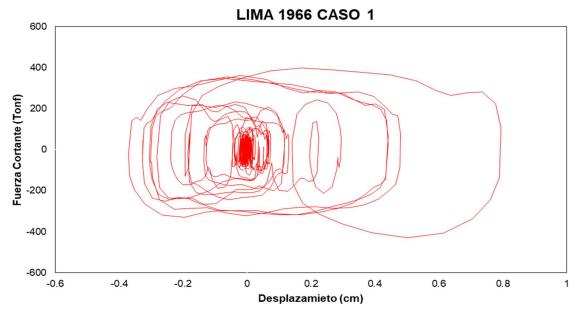

Nota: La curva histerética generada para el disipador de Fluido Viscoso bajo el sismo de Ica 2007 en el caso 1 muestra una fuerza cortante máxima de 379,81 toneladas-fuerza (tonf) con un desplazamiento máximo de 0,52 cm. Esta curva evidencia la capacidad del disipador para captar y disipar la energía generada por el sismo, lo cual es esencial para disminuir la demanda sísmica en la estructura y la mitigación de posibles daños. Fuente: Elaboración propia.

Figura 115
Curva histerética con disipador de Fluido Viscoso – Ica 2007 caso 2

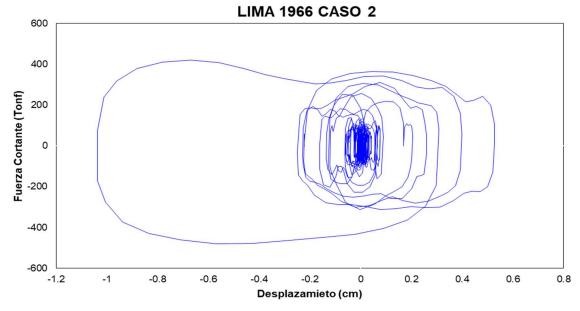

Nota: La curva histerética generada para el disipador de Fluido Viscoso bajo el sismo de Ica 2007 en el caso 2 muestra una fuerza cortante máxima de 477,59 toneladas-fuerza (tonf) con un desplazamiento máximo de 0,73 cm. Esta curva evidencia la capacidad del disipador para captar y disipar la energía generada por el sismo, lo cual es esencial para disminuir la demanda sísmica en la estructura y la mitigación de posibles daños. Fuente: Elaboración propia.

Figura 116Curva histerética con disipador de Fluido Viscoso – Lima 1966 caso 1

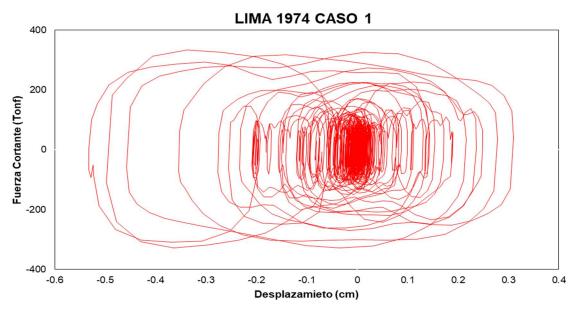

Nota: La curva histerética generada para el disipador de Fluido Viscoso bajo el sismo de Lima 1966 en el caso 1 muestra una fuerza cortante máxima de 428,28 toneladas-fuerza (tonf) con un desplazamiento máximo de 0,79 cm. Esta curva evidencia la capacidad del disipador para captar y disipar la energía generada por el sismo, lo cual es esencial para disminuir la demanda sísmica en la estructura y la mitigación de posibles daños. Fuente: Elaboración propia.

Figura 117Curva histerética con disipador de Fluido Viscoso – Lima 1966 caso 2

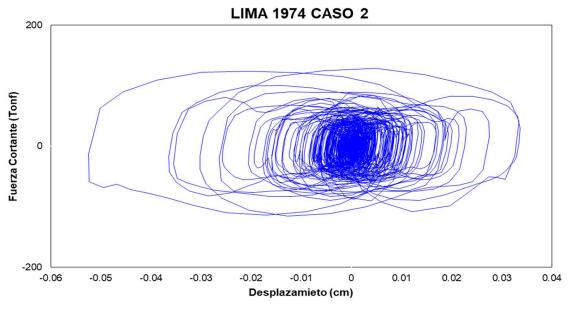

Nota: La curva histerética generada para el disipador de Fluido Viscoso bajo el sismo de Lima 1966 en el caso 2 muestra una fuerza cortante máxima de 479,28 toneladas-fuerza (tonf) con un desplazamiento máximo de 1,03 cm. Esta curva evidencia la capacidad del disipador para captar y disipar la energía generada por el sismo, lo cual es esencial para disminuir la demanda sísmica en la estructura y la mitigación de posibles daños. Fuente: Elaboración propia.

Figura 118Curva histerética con disipador de Fluido Viscoso – Lima 1974 caso 1

Nota: La curva histerética generada para el disipador de Fluido Viscoso bajo el sismo de Lima 1974 en el caso 1 muestra una fuerza cortante máxima de 334,08 toneladas-fuerza (tonf) con un desplazamiento máximo de 0,53 cm. Esta curva evidencia la capacidad del disipador para captar y disipar la energía generada por el sismo, lo cual es esencial para disminuir la demanda sísmica en la estructura y la mitigación de posibles daños. Fuente: Elaboración propia.

Figura 119Curva histerética con disipador de Fluido Viscoso – Lima 1974 caso 2

Nota: La curva histerética generada para el disipador de Fluido Viscoso bajo el sismo de Lima 1974 en el caso 2 muestra una fuerza cortante máxima de 128,84 toneladas-fuerza (tonf) con un desplazamiento máximo de 0,05 cm. Esta curva evidencia la capacidad del disipador para captar y disipar la energía generada por el sismo, lo cual es esencial para disminuir la demanda sísmica en la estructura y la mitigación de posibles daños. Fuente: Elaboración propia.

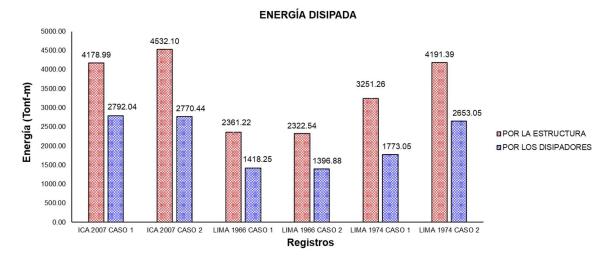

4.2.2.3.7 Balance energético

Tabla 98Distribución de energía disipada por la estructura y por los disipadores de Fluido Viscoso

Registro	Energía de entrada	Energía disipada por la estructura		Energía disipada por los disipadores Fluido Viscoso	
	(tonf-m)	(tonf-m)	(%)	(tonf-m)	(%)
Ica 2007 Caso 1	6971,40	4178,99	60	2792,04	40
Ica 2007 Caso 2	7303,18	4532,10	62	2770,44	38
Lima 66 Caso 1	3779,93	2361,22	62	1418,25	38
Lima 66 Caso 2	3719,86	2322,54	62	1396,88	38
Lima 74 Caso 1	5024,81	3251,26	65	1773,05	35
Lima 74 Caso 2	6849,78	4191,39	61	2653,05	39
Promedio	5608,16	3472,92	62	2133,95	38

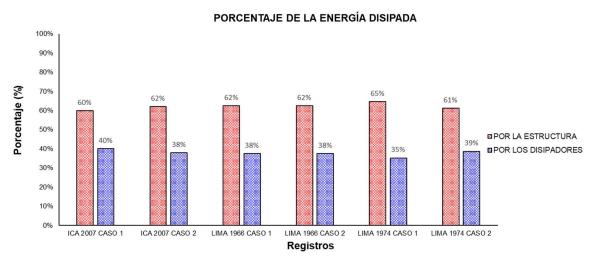
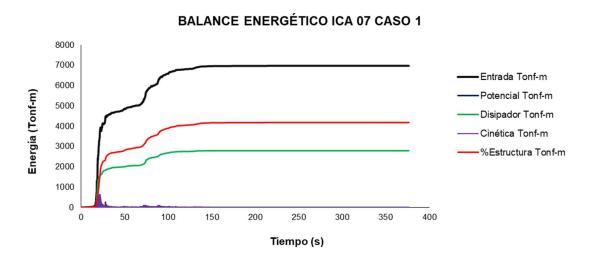
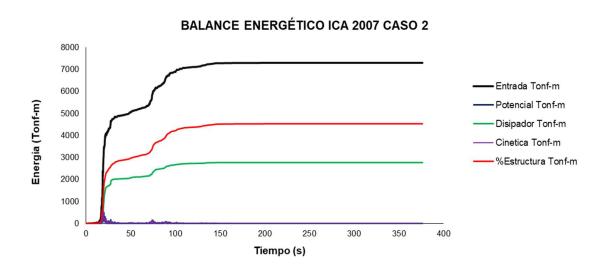

Nota: La tabla muestra un análisis comparativo de la energía disipada por la estructura y por los disipadores de fluido viscoso en diferentes registros sísmicos (Ica 2007, Lima 66, Lima 74) bajo distintos casos. Se observa que, en promedio, el 62% de la energía es disipada por la estructura, mientras que los disipadores de fluido viscoso contribuyen con la disipación del 38% de la energía total. Estos resultados destacan la eficiencia de los disipadores en la mitigación de los efectos sísmicos, complementando la capacidad de la estructura para absorber energía. Fuente: Elaboración propia.

Figura 120 *Energía disipada por la estructura y por los disipadores de Fluido Viscoso*

Nota: La figura compara la energía disipada por la estructura en escenarios sin disipadores y con disipadores de fluido viscoso. Los resultados muestran una reducción significativa en la energía disipada por la estructura cuando se incorporan disipadores, lo que evidencia la eficacia de estos dispositivos en la mejora del comportamiento sísmico de la estructura. La gráfica resalta cómo los disipadores contribuyen a disminuir la carga energética que la estructura debe manejar, mejorando su desempeño bajo eventos sísmicos. Fuente: Elaboración propia.


Figura 121
Porcentaje de energía disipada sin disipadores y con disipadores de Fluido Viscoso

Nota: La figura compara la energía disipada por la estructura en escenarios sin disipadores y con disipadores de Fluido viscoso. Los resultados muestran una reducción significativa en la energía disipada por la estructura cuando se incorporan disipadores, lo que evidencia la eficacia de estos dispositivos en la mejora del comportamiento sísmico de la estructura. La gráfica resalta cómo los disipadores contribuyen a disminuir la carga energética que la estructura debe manejar, mejorando su desempeño bajo eventos sísmicos. Fuente: Elaboración propia.


Figura 122

Balance energético de la estructura bajo el registro sísmico de Ica 2007 - caso 1

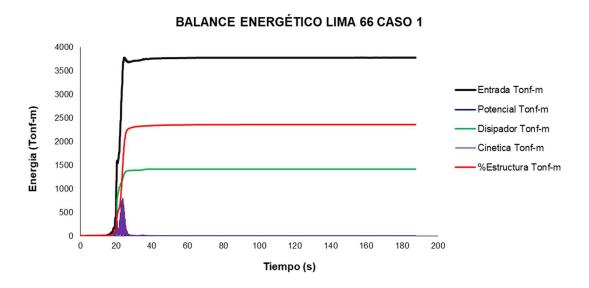

Nota: Se observa un balance energético adecuado en la estructura bajo el sismo de Ica 2007 - caso 1, con una efectiva absorción de energía por los DFV, lo que contribuye a la estabilidad estructural. Fuente: Elaboración Propia.

Figura 123Balance energético de la estructura bajo el registro sísmico de Ica 2007 - caso 2

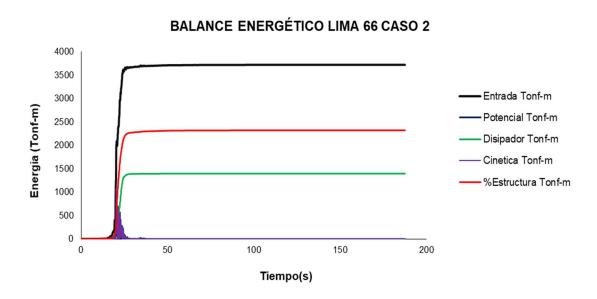

Nota: Se observa un balance energético adecuado en la estructura bajo el sismo de Ica 2007 - caso 2, con una efectiva absorción de energía por los DFV, lo que contribuye a la estabilidad estructural. Fuente: Elaboración propia.

Figura 124Balance energético de la estructura bajo el registro sísmico de Lima 66 - caso 1

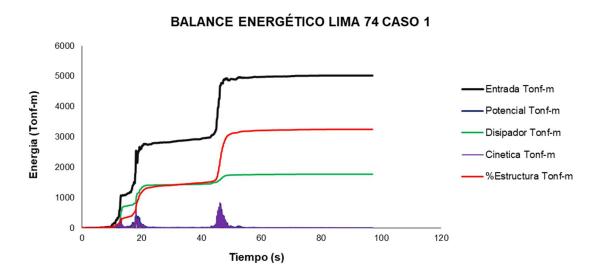

Nota: Se observa un balance energético adecuado en la estructura bajo el sismo de Lima 66 - caso 1, con una efectiva absorción de energía por los DFV, lo que contribuye a la estabilidad estructural. Fuente: Elaboración propia.

Figura 125Balance energético de la estructura bajo el registro sísmico de Lima 66 - caso 2

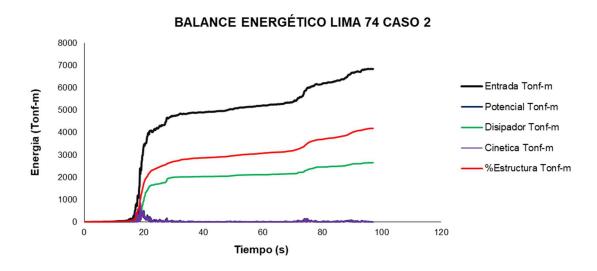

Nota: Se observa un balance energético adecuado en la estructura bajo el sismo de Lima 66 - caso 2, con una efectiva absorción de energía por los DFV, lo que contribuye a la estabilidad estructural. Fuente: Elaboración propia.

Figura 126Balance energético de la estructura bajo el registro sísmico de Lima 74 - caso 1

Nota: Se observa un balance energético adecuado en la estructura bajo el sismo de Lima 74 - caso 1, con una efectiva absorción de energía por los DFV, lo que contribuye a la estabilidad estructural. Fuente: Elaboración propia.

Figura 127Balance energético de la estructura bajo el registro sísmico de Lima 74 - caso 2

Nota: Se observa un balance energético adecuado en la estructura bajo el sismo de Lima 74 - caso 2, con una efectiva absorción de energía por los DFV, lo que contribuye a la estabilidad estructural. Fuente: Elaboración propia.

4.2.2.3.8 Selección del disipador

El disipador se selecciona evaluando el caso más vulnerable en la dirección X, que en este caso corresponde al escenario de Lima 74 caso 1.

Tabla 99Selección del disipador de acuerdo a su fuerza (KIP) del nivel 10

Link	Nivel	Registro	Tonf	Fuerza (KIP)	Fuerza (KIP)
K10	10	TH74 caso 1	220,3599	486	715
K20	10	TH74 caso 1	194,7650	429	715
K30	10	TH74 caso 1	210,2734	464	715
K42	10	TH74 caso 1	211,1035	465	715
K53	10	TH74 caso 1	237,2017	523	715
K63	10	TH74 caso 1	313,8491	692	715
K73	10	TH74 caso 1	146,0034	322	715
K83	10	TH74 caso 1	388,9701	858	900

Tabla 100Selección del disipador de acuerdo a su fuerza (KIP) del nivel 9

Link	Nivel	Registro	Tonf	Fuerza (KIP)	Fuerza (KIP)
K9	09	TH74 caso 1	315,8726	696	715
K19	09	TH74 caso 1	279,7423	617	715
K29	09	TH74 caso 1	295,2775	651	715
K41	09	TH74 caso 1	297,7482	656	715
K52	09	TH74 caso 1	317,1712	699	715
K62	09	TH74 caso 1	362,1773	798	715
K72	09	TH74 caso 1	252,5235	557	715
K82	09	TH74 caso 1	403,2000	889	900

Fuente: Elaboración propia.

Tabla 101Selección del disipador de acuerdo a su fuerza (KIP) del nivel 8

Link	Nivel	Registro	Tonf	Fuerza (KIP)	Fuerza (KIP)
K8	08	TH74 caso 1	279,4700	616	715
K18	08	TH74 caso 1	258,0087	569	715
K28	08	TH74 caso 1	270,6808	597	715
K40	08	TH74 caso 1	271,1227	598	715
K51	08	TH74 caso 1	325,7855	718	715
K61	08	TH74 caso 1	372,8928	822	900
K71	08	TH74 caso 1	201,5346	444	715
K81	08	TH74 caso 1	386,6078	852	900

Fuente: Elaboración propia.

Tabla 102Selección del disipador de acuerdo a su fuerza (KIP) del nivel 7

Link	Nivel	Registro	Tonf	Fuerza (KIP)	Fuerza (KIP)
K7	07	TH74 caso 1	398,0921	878	900
K17	07	TH74 caso 1	374,6851	826	900
K27	07	TH74 caso 1	388,1226	856	900
K39	07	TH74 caso 1	389,8093	859	900
K50	07	TH74 caso 1	455,2817	1004	1450
K60	07	TH74 caso 1	461,3065	1017	1450
K70	07	TH74 caso 1	359,9742	794	900
K80	07	TH74 caso 1	450,1851	992	1450

Tabla 103Selección del disipador de acuerdo a su fuerza (KIP) del nivel 6

Link	Nivel	Registro	Tonf	Fuerza (KIP)	Fuerza (KIP)
K6	06	TH74 caso 1	346,9380	765	900
K16	06	TH74 caso 1	331,5380	731	900
K26	06	TH74 caso 1	340,3589	750	900
K38	06	TH74 caso 1	340,3143	750	900
K49	06	TH74 caso 1	434,8615	959	1450
K59	06	TH74 caso 1	434,3661	958	1450
K69	06	TH74 caso 1	265,2469	585	715
K79	06	TH74 caso 1	380,6068	839	900

Fuente: Elaboración Propia.

Tabla 104Selección del disipador de acuerdo a su fuerza (KIP) del nivel 5

Link	Nivel	Registro	Tonf	Fuerza (KIP)	Fuerza (KIP)
K5	05	TH74 caso 1	456,3207	1006	1450
K15	05	TH74 caso 1	439,7678	970	1450
K25	05	TH74 caso 1	449,0832	990	1450
K37	05	TH74 caso 1	450,4051	993	1450
K48	05	TH74 caso 1	549,6591	1212	1450
K58	05	TH74 caso 1	529,5448	1167	1450
K68	05	TH74 caso 1	425,9744	939	1450
K78	05	TH74 caso 1	498,9175	1100	1450

Fuente: Elaboración propia.

Tabla 105Selección del disipador de acuerdo a su fuerza (KIP) del nivel 4

Link	Nivel	Registro	Tonf	Fuerza (KIP)	Fuerza (KIP)
K4	04	TH74 caso 1	375,6925	828	900
K14	04	TH74 caso 1	372,1684	820	900
K24	04	TH74 caso 1	376,9506	831	900
K36	04	TH74 caso 1	376,2437	829	900
K47	04	TH74 caso 1	481,7483	1062	1450
K57	04	TH74 caso 1	461,1234	1017	1450
K67	04	TH74 caso 1	312,7574	690	715
K77	04	TH74 caso 1	346,8273	765	900

Tabla 106Selección del disipador de acuerdo a su fuerza (KIP) del nivel 3

Link	Nivel	Registro	Tonf	Fuerza (KIP)	Fuerza (KIP)
K3	03	TH74 caso 1	461,5751	1018	1450
K13	03	TH74 caso 1	459,4145	1013	1450
K23	03	TH74 caso 1	463,3362	1021	1450
K35	03	TH74 caso 1	464,2698	1024	1450
K46	03	TH74 caso 1	559,9658	1235	1450
K56	03	TH74 caso 1	522,8198	1153	1450
K66	03	TH74 caso 1	417,197	920	900
K76	03	TH74 caso 1	469,5198	1035	1450

Fuente: Elaboración propia.

Tabla 107Selección del disipador de acuerdo a su fuerza (KIP) del nivel 2

Link	Nivel	Registro	Tonf	Fuerza (KIP)	Fuerza (KIP)
K2	02	TH74 caso 1	374,4616	826	900
K12	02	TH74 caso 1	374,4196	825	900
K22	02	TH74 caso 1	375,5773	828	900
K34	02	TH74 caso 1	374,494	826	900
K44	02	TH74 caso 1	463,2953	1021	1450
K55	02	TH74 caso 1	426,6034	941	1450
K65	02	TH74 caso 1	320,8307	707	715
K75	02	TH74 caso 1	311,6696	687	715

Fuente: Elaboración propia.

Tabla 108Selección del disipador de acuerdo a su fuerza (KIP) del nivel 1

Link	Nivel	Registro	Tonf	Fuerza (KIP)	Fuerza (KIP)
K1	01	TH74 caso 1	448,4818	989	1450
K11	01	TH74 caso 1	443,9698	979	1450
K21	01	TH74 caso 1	421,3632	929	1450
K33	01	TH74 caso 1	422,5815	932	1450
K43	01	TH74 caso 1	506,5347	1117	1450
K54	01	TH74 caso 1	480,0374	1058	1450
K64	01	TH74 caso 1	369,4897	815	900
K74	01	TH74 caso 1	381,2617	841	900

Existen tres tipos de disipadores en este estudio. A continuación, se proporcionan las dimensiones detalladas de los tres disipadores, así como de la placa base correspondiente, con el fin de asegurar una comprensión completa de sus características y su adecuado dimensionamiento en el contexto del diseño estructural. Estas especificaciones son cruciales para garantizar que los disipadores seleccionados cumplan con los requisitos de desempeño durante eventos sísmicos, optimizando la seguridad y la funcionalidad de la estructura.

4.2.2.3.9 Costo del disipador

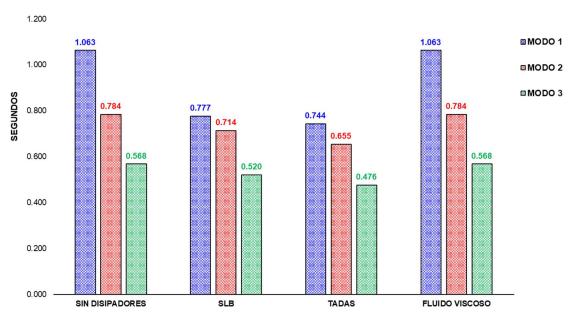
En la Tabla 109 se presenta el costo referencial de la implementación de los disipadores de fluido viscoso, detallando la fuerza (KIP), cantidad, precio unitario y el costo parcial de cada tipo de disipador. Este cálculo es referencial y muestra un costo total estimado de 652,000.00 dólares, basado en las especificaciones de fuerza.

Tabla 109Costo de implementación del disipador de Fluido Viscoso

Fuerza (KIP)	Cantidad	Precio unitario (\$)	Parcial (\$)
715	24	6 000,00	144 000,00
900	26	8 000,00	208 000,00
1450	30	10 000,00	300 000,00
	652 000,00		

4.3 RESULTADOS

4.3.1 Periodos


Tabla 110Comparación de modos de vibración

Modo	Sin disipadores Periodo (s)	SLB Periodo (s)	TADAS Periodo (s)	Fluido Viscoso Periodo (s)
1	1,063	0,777	0,744	1,063
2	0,784	0,714	0,655	0,784
3	0,568	0,520	0,476	0,568

Nota: La tabla muestra una comparación de los modos de vibración en función de los períodos de vibración (en segundos) para diferentes configuraciones estructurales: sin disipadores, con disipadores Shear Link Bozzo (SLB), con disipadores TADAS, y con disipadores de Fluido viscoso. Los resultados indican que los sistemas con disipadores TADAS y SLB reducen significativamente los períodos de vibración en comparación con la estructura sin disipadores, lo que implica una mayor rigidez estructural. Por otro lado, los disipadores de fluido viscoso no alteran los períodos de vibración, lo que sugiere que su principal función es la amortiguación de la energía sin afectar la rigidez global del sistema. Fuente: Elaboración propia.

COMPARACIÓN DE MODOS DE VIBRACIÓN

Figura 128
Comparación de modos de vibración

Nota: La figura compara los modos de vibración de una estructura con barras en azul (modo 1), rojo (modo 2), y verde (modo 3). Sin disipadores, el modo 1 alcanza 1.063 segundos. Con los disipadores SLB y TADAS, los períodos de vibración se reducen significativamente en todos los modos, especialmente con TADAS. El disipador Fluido Viscoso mantiene valores similares al sistema sin disipadores, sin reducir los períodos de vibración. Fuente: Elaboración propia.

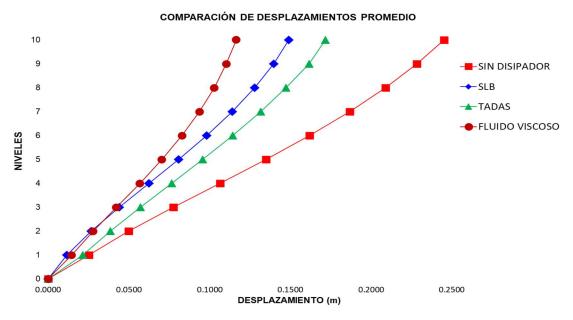

4.3.2 Desplazamientos promedio

Tabla 111Comparación de desplazamientos dx promedio

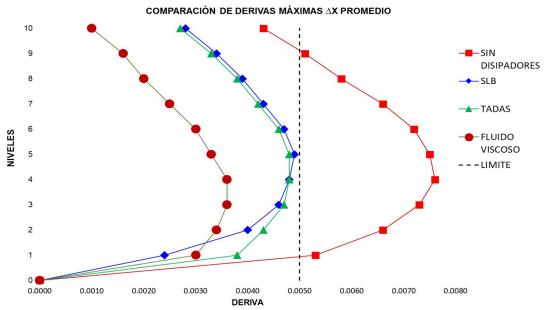
Nivel	Sin disipadores dx (m)	SLB dx (m)	TADAS dx (m)	Fluido Viscoso dx (m)
10	0,2451	0,1490	0,1717	0,1165
09	0,2283	0,1397	0,1615	0,1103
08	0,2088	0,1278	0,1473	0,1028
07	0,1867	0,1140	0,1315	0,0937
06	0,1619	0,0982	0,1142	0,0828
05	0,1349	0,0807	0,0957	0,0703
04	0,1064	0,0624	0,0764	0,0567
03	0,0775	0,0440	0,0571	0,0422
02	0,0498	0,0266	0,0384	0,0278
01	0,0250	0,0115	0,0212	0,0145

Nota: La tabla compara los desplazamientos promedio en un edificio con diferentes configuraciones de disipadores. Los mayores desplazamientos se observan sin disipadores, mientras que los disipadores de fluido viscoso muestran los menores desplazamientos, indicando el mejor desempeño estructural. Los disipadores SLB también reducen significativamente los desplazamientos, y los TADAS, aunque menos efectivos, mejoran respecto a no usar disipadores. En resumen, menores desplazamientos indican mejor desempeño, destacando los disipadores de fluido viscoso como la mejor opción. Fuente: Elaboración propia.

Figura 129Comparación de desplazamientos dx promedio

Nota: La figura muestra que la estructura sin disipador (línea roja con cuadrados) tiene los mayores desplazamientos, mientras que los disipadores de Fluido Viscoso (línea roja con círculos) presentan los menores desplazamientos, indicando el mejor desempeño. Los disipadores SLB (línea azul con rombos) y TADAS (línea verde con triángulos) también reducen los desplazamientos, siendo SLB más efectivo que TADAS. Fuente: Elaboración propia.

4.3.3 Derivas


Tabla 112Comparación de derivas máximas ΔX promedio

Nivel	Sin disipadores ΔX	SLB ΔX	TADAS ΔX	Fluido Viscoso ΔX
10	0,0043	0,0028	0,0027	0,0010
09	0,0051	0,0034	0,0033	0,0016
08	0,0058	0,0039	0,0038	0,0020
07	0,0066	0,0043	0,0042	0,0025
06	0,0072	0,0047	0,0046	0,0030
05	0,0075	0,0049	0,0048	0,0033
04	0,0076	0,0048	0,0048	0,0036
03	0,0073	0,0046	0,0047	0,0036
02	0,0066	0,0040	0,0043	0,0034
01	0,0053	0,0024	0,0038	0,0030

Nota: La tabla compara las derivas máximas Δx en distintos niveles de un edificio bajo diferentes configuraciones de disipadores: Sin disipadores, SLB, TADAS y Fluido Viscoso. Los resultados muestran que la configuración sin disipadores presenta las mayores derivas, indicando un menor control de las deformaciones laterales bajo cargas sísmicas. Por otro lado, el disipador de Fluido viscoso destaca por lograr las menores derivas, seguido por los disipadores SLB y TADAS. Fuente: Elaboración propia.

Figura 130

Comparación de derivas máximas Δx promedio

Nota: La figura compara las derivas máximas en distintos niveles del edificio. Los disipadores de Fluido Viscoso (línea guinda con círculos) presentan las menores derivas, manteniéndose siempre por debajo de la deriva objetivo de 0,005. Los disipadores SLB (azul con rombos) y TADAS (verde con triángulos) también logran reducir las derivas, pero son ligeramente menos efectivos. La estructura sin disipadores (roja con cuadrados) excede claramente la deriva objetivo de 0,005, mostrando el peor comportamiento estructural. Fuente: Elaboración Propia.

4.3.4 Fuerza cortante

Tabla 113Comparación de cortantes Vx (Tonf) promedio

Nivel	Sin disipadores Vx (Tonf)	SLB Vx (Tonf)	TADAS Vx (Tonf)	Fluido Viscoso Vx (Tonf)
10	1981,50	2013,10	2026,12	982,79
09	3561,11	3718,39	3773,16	1650,59
08	4809,24	5259,20	5365,91	2632,76
07	5863,98	6678,39	6902,71	3553,57
06	6774,33	7818,18	8259,36	4343,08
05	7601,43	8789,29	9464,20	5074,81
04	8287,99	9712,87	10550,43	5725,49
03	8780,20	10327,48	11467,47	6104,68
02	9085,17	10253,01	11854,96	6633,08
01	9227,22	9780,58	11773,25	7362,54

Nota: La tabla compara las fuerzas cortantes promedio Vx (Tonf) en diferentes niveles de un edificio bajo cuatro configuraciones: Sin disipadores, SLB, TADAS y Fluido Viscoso. Los disipadores histeréticos (SLB y TADAS) muestran mayores fuerzas cortantes, debido a la rigidez adicional que aportan estos disipadores, lo que incrementa la absorción y transferencia de energía sísmica. En contraste, los disipadores de fluido viscoso, al no aumentar la rigidez de la estructura, reducen significativamente las cortantes, absorbiendo el sismo de manera más eficiente sin sobrecargar la estructura. Fuente: Elaboración propia.

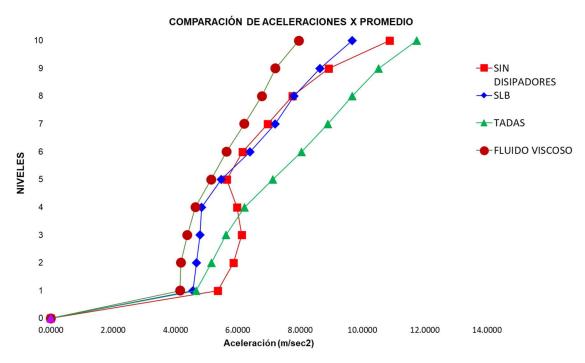

4.3.5 Aceleraciones

Tabla 114Comparación de aceleraciones (m/sec2) en X promedio

Nivel	Sin disipadores (m/sec2)	SLB (m/sec2)	TADAS (m/sec2)	Fluido Viscoso (m/sec2)
10	10,8697	9,6697	11,7432	7,9606
09	8,9130	8,6354	10,5125	7,2117
08	7,7509	7,8032	9,6716	6,7756
07	6,9541	7,1976	8,8887	6,2140
06	6,1458	6,3952	8,0467	5,6384
05	5,6420	5,4760	7,1184	5,1485
04	5,9782	4,8398	6,2138	4,6396
03	6,1207	4,7849	5,6245	4,3816
02	5,8647	4,6771	5,1528	4,1762
01	5,3603	4,5666	4,6679	4,1506

Nota: La tabla compara las aceleraciones promedio en dirección X en diferentes niveles de una estructura sin y con disipadores. Los disipadores TADAS generan las mayores aceleraciones debido a su rigidez, mientras que los disipadores de fluido viscoso reducen las aceleraciones, demostrando una mejor absorción de energía sísmica. Los SLB y la configuración sin disipadores muestran aceleraciones intermedias, reflejando un balance entre rigidez y amortiguamiento. Fuente: Elaboración propia.

Figura 131Comparación de aceleraciones x promedio

Nota: La figura compara las aceleraciones promedio en dirección X para cuatro configuraciones estructurales. La línea verde con triángulos (disipadores TADAS) genera las mayores aceleraciones debido a su rigidez. La línea roja con círculos (disipadores de fluido viscoso) muestra las menores aceleraciones, siendo los más efectivos en absorber energía sísmica. La línea azul con rombos (SLB) y la línea roja con cuadrados (sin disipadores) presentan aceleraciones intermedias. Fuente: Elaboración propia.

4.3.6 Balance energético

Tabla 115Comparación del balance energético

	SLB	TADAS	Fluido Viscoso
	(Tonf-m)	(Tonf-m)	(Tonf-m)
Energía de entrada	4021,94	5542,81	5608,16
Energía disipara por la estructura	3702,48	5097,03	3472,92
Energía disipada por el disipador	319,39	445,68	2133,95

Nota: La tabla muestra el balance energético comparativo para los disipadores SLB, TADAS y Fluido Viscoso, medido en Tonf-m. Los disipadores histeréticos SLB y TADAS, al incrementar la rigidez de la estructura, hacen que esta disipe una mayor parte de la energía sísmica, lo que reduce la cantidad de energía que los disipadores deben manejar. Como resultado, estos disipadores disipan menos energía en comparación con el disipador de fluido viscoso. Por el contrario, el disipador de fluido viscoso, que no aporta rigidez adicional, participa más activamente en la amortiguación, absorbiendo una mayor cantidad de energía sísmica (2133,95 Tonf-m), lo que alivia significativamente la carga sobre la estructura principal. Fuente: Elaboración propia.

4.3.7 Costo

Tabla 116Comparación de costo del disipador

SLB	TADAS	FLUIDO VISCOSO
(\$)	(\$)	(\$)
411 000,00	440 000,00	652 000,00

Nota: La tabla presenta una comparación de costos entre los distintos tipos de disipadores: SLB, TADAS y Fluido Viscoso. Los resultados muestran que el disipador de fluido viscoso es el más costoso, con un valor de \$652,000.00, seguido por el TADAS a \$440,000.00 y el SLB, que es el más económico, con un costo de \$411,000.00. Es importante destacar que los montos son referenciales y deben ser considerados en la toma de decisiones, balanceando la inversión inicial con la eficacia del disipador en la reducción de daños estructurales y la mejora del desempeño sísmico. Fuente: Elaboración propia.

4.4 PRUEBA ESTADÍSTICA

4.4.1 Periodos

Tabla 117Comparación de modos de vibración

Modo	SLB Reducción (%)	TADAS Reducción (%)	Fluido Viscoso Reducción (%)
1	26,90	30,01	-
2	8,93	16,45	-
3	8,45	16,20	-

Nota: La tabla compara la reducción porcentual de los períodos de vibración en los modos 1, 2 y 3 para los disipadores SLB y TADAS. El disipador TADAS muestra una mayor reducción, alcanzando hasta un 30,01% en el primer modo, lo que indica una mayor rigidez estructural. El disipador de fluido viscoso no reduce los períodos, ya que su función es amortiguar la energía sin aumentar la rigidez. Fuente: Elaboración propia.

4.4.2 Desplazamientos promedio

Tabla 118Comparación de desplazamientos dx promedio

Nivel	SLB Reducción (%)	TADAS Reducción (%)	Fluido Viscoso Reducción (%)
10	39	30	52
09	39	29	52
08	39	29	51
07	39	30	50
06	39	29	49
05	40	29	48
04	41	28	47
03	43	26	46
02	46	23	44
01	54	15	42
Promedio	42	27	48

Nota: La tabla presenta la comparación de la reducción porcentual de los desplazamientos promedio en la dirección X de una estructura utilizando tres tipos de disipadores: SLB, TADAS, y Fluido Viscoso. Los resultados indican que el disipador de fluido viscoso es el más efectivo, logrando una reducción promedio del 48% en los desplazamientos, seguido por el disipador SLB con una reducción del 42%, y finalmente el disipador TADAS con un 27%. Estos resultados destacan la capacidad de los disipadores de fluido viscoso para controlar los desplazamientos laterales, lo que contribuye significativamente a mejorar la resiliencia sísmica de la estructura. Fuente: Elaboración propia.

4.4.3 Derivas

Tabla 119Comparación de derivas máximas ΔX promedio

Nivel	SLB Reducción (%)	TADAS Reducción (%)	Fluido Viscoso Reducción (%)
10	34	37	76
09	33	34	69
08	33	34	66
07	34	36	62
06	35	36	59
05	36	37	56
04	37	37	53
03	38	36	51
02	39	34	48
01	55	27	43
Promedio	37	35	58

Nota: La tabla compara la reducción porcentual en las derivas máximas promedio (ΔX) para los disipadores SLB, TADAS y Fluido viscoso a lo largo de los niveles de un edificio. El disipador de Fluido viscoso se destaca como el más efectivo, logrando una reducción promedio del 58% en las derivas, con un máximo del 76% en el nivel superior. El disipador SLB sigue con una reducción promedio del 37%, mostrando un buen desempeño, especialmente en los niveles inferiores. Por su parte, el disipador TADAS, aunque eficaz, presenta una reducción promedio del 35%, ligeramente menor que SLB. Fuente: Elaboración propia.

4.4.4 Fuerza cortante

Tabla 120Comparación de cortantes Vx (Tonf) promedio

Nivel	SLB (%)	TADAS (%)	Fluido Viscoso (%)
10	+2	+2	-50
09	+4	+6	-54
08	+9	+12	-45
07	+14	+18	-39
06	+15	+22	-36
05	+16	+25	-33
04	+17	+27	-31
03	+18	+31	-30
02	+13	+30	-27
01	+6	+28	-20

Nota: La tabla compara las fuerzas cortantes en un edificio con disipadores SLB, TADAS y de Fluido Viscoso. SLB y TADAS aumentan los cortantes entre 2% y 31% por su mayor rigidez, mientras que el Fluido Viscoso las reduce entre 20% y 54%, absorbiendo energía sin aumentar la rigidez. Fuente: Elaboración propia.

4.4.5 Aceleraciones

Tabla 121Comparación de aceleraciones (m/sec) en X promedio

Nivel	SLB (%)	TADAS (%)	Fluido Viscoso (%)
10	-11	8	-27
09	-3	8	-19
08	+1	25	-13
07	+4	28	-11
06	+4	31	-8
05	-3	26	-9
04	-19	4	-22
03	-22	8	-28
02	-20	12	-29
01	-15	13	-23

Nota: La tabla compara las aceleraciones promedio (m/sec2) en la dirección X a lo largo de los diferentes niveles de un edificio utilizando los disipadores SLB, TADAS y Fluido Viscoso. Los resultados muestran que los disipadores TADAS aumentan significativamente las aceleraciones en la mayoría de los niveles, con incrementos de hasta un 31%, lo que refleja el aumento de rigidez en la estructura. El disipador SLB presenta un comportamiento mixto, con algunas reducciones y otros incrementos moderados en las aceleraciones. En contraste, el disipador de fluido viscoso reduce las aceleraciones en todos los niveles, con disminuciones de hasta un 29%, demostrando su eficacia en absorber la energía sísmica sin incrementar las fuerzas dinámicas en la estructura. Fuente: Elaboración propia.

4.4.6 Balance energético

Tabla 122Comparación del balance energético

	SLB (%)	TADAS (%)	Fluido Viscoso (%)
Energía disipara por la estructura	92,27	92,35	61,19
Energía disipada por el disipador	7,73	7,65	38,73

Nota: La tabla compara el balance energético entre los disipadores SLB, TADAS y Fluido viscoso. Los disipadores histeréticos SLB y TADAS disipan una mayor proporción de energía a través de la estructura (92,27% y 92,35%; respectivamente), mientras que solo una pequeña parte de la energía es disipada directamente por los disipadores (7,73% y 7,65%). En contraste, el disipador de fluido viscoso muestra un comportamiento diferente, donde la estructura disipa menos energía (61,19%), y el propio disipador absorbe y disipa una porción significativa (38,73%). Esto indica que los disipadores de Fluido viscoso son más efectivos en la absorción directa de la energía sísmica, reduciendo la demanda sobre la estructura. Fuente: Elaboración propia.

4.5 COMPROBACIÓN DE HIPÓTESIS

Hipótesis general: El análisis comparativo del comportamiento sísmico de disipadores histeréticos SLB, TADAS y disipadores sísmicos de Fluido-Viscoso demostrara identificar la alternativa más eficaz en la resiliencia sísmica de la infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024

El análisis comparativo realizado en la tesis evidencia que los disipadores de fluido viscoso son los más efectivos en términos de reducción de desplazamientos y derivas máximas. La Tabla 95 muestra que el disipador de fluido viscoso alcanzó una reducción promedio del 48% en los desplazamientos, y la Tabla 89 refleja una reducción promedio del 58% en las derivas, destacando su superioridad en el control de movimientos laterales de la estructura. Estos resultados demuestran que este tipo de disipador mejora significativamente la resiliencia sísmica al minimizar las demandas de desplazamiento y deformación en la estructura, lo que reduce la probabilidad de daño durante un evento sísmico.

Por otro lado, aunque los disipadores histeréticos SLB y TADAS también mejoran el comportamiento sísmico, sus efectos se traducen principalmente en un aumento de la rigidez, lo que se evidencia en el incremento de las fuerzas cortantes en la Tabla 90, y en algunos casos, en un aumento de las aceleraciones en la Tabla 98. Sin embargo, estos dispositivos también son efectivos para reducir las demandas sobre la estructura, como se observa en la reducción de los períodos de vibración en la Tabla 87, lo que mejora la capacidad de la estructura para resistir eventos sísmicos. En conclusión, aunque el disipador de fluido viscoso se destaca en términos de reducción de desplazamientos y derivas, la elección del disipador más adecuado debe considerar las necesidades específicas del proyecto y el balance entre costo y beneficios.

Hipótesis específica: Al realizar el análisis dinámico modal espectral proporcionará información fundamental para justificar y respaldar la necesidad de incorporar los disipadores de energía SLB, TADAS y Fluido-Viscoso como medida efectiva de mejorar la resiliencia sísmica de la infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024

El análisis dinámico modal espectral, junto con el análisis no lineal Tiempo-Historia, ha proporcionado información crucial que respalda la necesidad de implementar disipadores de energía en la estructura. Específicamente, en la dirección X, la deriva máxima alcanzada fue

de 0,0083; lo cual supera el límite permisible de 0,007 según la norma E.030. Este exceso en la deriva indica un riesgo significativo de deformación excesiva bajo cargas sísmicas, lo que podría comprometer la estabilidad y seguridad de la estructura si no se toman medidas correctivas. En la dirección Y, la máxima deriva registrada fue de 0,0065; lo que se mantiene dentro del rango permitido por la normativa. Esto sugiere que, en el eje Y, la estructura es capaz de soportar las demandas sísmicas sin necesidad de refuerzos adicionales. Dado que la dirección X muestra un comportamiento fuera de los límites normativos, es necesario implementar disipadores de sísmicos en ese eje para reducir las derivas a niveles seguros.

Hipótesis específica: Este análisis detallado se centrará en determinar las posiciones más eficaces para maximizar la capacidad de estos disipadores de energía SLB, TADAS y Fluido-Viscoso y mejorar la resiliencia sísmica de la infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024

El análisis detallado realizado en esta tesis fue crucial para identificar no solo las posiciones, sino también las cantidades y tipos óptimos de disipadores de energía a implementar en la estructura, optimizando su capacidad para mejorar la resiliencia sísmica. A través de múltiples iteraciones y pruebas, se refinaron los modelos estructurales ajustando la ubicación y el tipo de disipador según sus características específicas y su influencia en la respuesta global de la estructura. Cada tipo de disipador SLB, TADAS, y Fluido Viscoso, aunque operan de manera diferente, comparten el objetivo de mejorar la resistencia sísmica. Se determinó que los disipadores de fluido viscoso eran más efectivos en los niveles superiores, donde su capacidad para absorber energía sin aumentar la rigidez reducía significativamente los desplazamientos y derivas. En contraste, los disipadores histeréticos, como SLB y TADAS, mostraron un rendimiento óptimo en los niveles inferiores, donde su capacidad para incrementar la rigidez fue clave para controlar las fuerzas internas y reducir las deformaciones laterales. Este enfoque iterativo y basado en pruebas aseguró una implementación estratégica que maximiza la resiliencia sísmica, garantizando que la estructura soporte de manera segura y efectiva futuros eventos sísmicos.

Hipótesis específica: Al realizar el análisis dinámico no lineal tiempo-historia permitirá la evaluación de la respuesta sísmica con la implementación de los disipadores en la infraestructura de la Universidad Tecnológica del Perú de Tacna demostrando que los disipadores optimizan la resiliencia sísmica y se encuentran dentro del rango admisible según la norma E030 – 2024

El análisis dinámico no lineal tiempo-historia ha demostrado que la implementación de disipadores de energía en la estructura de la Universidad Tecnológica del Perú de Tacna es altamente efectiva para cumplir con los requisitos normativos establecidos en la norma E030, particularmente en lo que respecta al control de derivas laterales, manteniéndolas por debajo del límite de 0,007. La inclusión de los disipadores, independientemente del tipo, ha optimizado la resiliencia sísmica de la estructura, reduciendo significativamente los desplazamientos y mejorando la estabilidad general. Este resultado confirma que los disipadores son una medida eficaz para fortalecer la capacidad de la infraestructura de resistir eventos sísmicos, garantizando su desempeño seguro y efectivo. En conjunto, los tres tipos de disipadores evaluados han demostrado su capacidad para mejorar la respuesta sísmica de la estructura, asegurando su integridad y cumpliendo con las exigencias de la normativa vigente.

Hipótesis específica: Al realizar el análisis costo-beneficio abarcará costos de implementación, mantenimiento y los beneficios asociados a la mejora de la resiliencia sísmica, proporcionando una visión completa para la toma de decisiones informada

El análisis costo-beneficio reveló que, aunque los disipadores de fluido viscoso son más costosos en términos de implementación (con un costo significativamente mayor en comparación con SLB y TADAS), ofrecen beneficios sustanciales en la reducción de desplazamientos, derivas y aceleraciones. Esto podría justificar su uso en estructuras donde la protección sísmica es prioritaria y el presupuesto lo permite. Por otro lado, los disipadores SLB y TADAS, con un costo menor, también proporcionan una mejora notable en la resiliencia sísmica, haciéndolos opciones viables para proyectos con restricciones presupuestarias. Este análisis integral proporciona una base sólida para la toma de decisiones informadas, equilibrando la inversión inicial con los beneficios en términos de seguridad y desempeño estructural.

4.6 DISCUSIÓN DE RESULTADOS

• Chen et al. (2023), reportaron una reducción del 40% en los desplazamientos laterales mediante el uso de métodos iterativos para optimizar la disposición de disipadores TADAS en edificios altos. En la investigación, los disipadores TADAS lograron una reducción de 27% en los desplazamientos, lo que indica su efectividad en mejorar la resiliencia sísmica, aunque con menor eficacia en comparación con los resultados de Chen et al. Esta diferencia podría deberse a la falta de un proceso de optimización

- iterativa en nuestra metodología. No obstante, ambos estudios confirman que los disipadores TADAS son herramientas valiosas para controlar la deriva sísmica, y que la optimización en su disposición podría potenciar aún más sus beneficios.
- Baquero et al. (2022), reportaron una reducción del 32% en los desplazamientos utilizando disipadores de fluido viscoso en estructuras compuestas, superando ligeramente la efectividad de los sistemas de base aislada. En esta investigación, los disipadores de fluido viscoso mostraron una mayor eficacia, logrando una reducción del 48% en los desplazamientos. Esta diferencia podría estar relacionada con las características estructurales y condiciones sísmicas específicas de la región de Tacna, Perú. Ambos estudios confirman la eficacia de los disipadores de fluido viscoso, pero los resultados aquí presentados sugieren que pueden ser aún más efectivos en ciertos contextos estructurales y geográficos.
- Gorji et al. (2022), reportaron una reducción del 30% en el desplazamiento lateral utilizando disipadores SLB en marcos de concreto reforzado. En esta investigación, los disipadores SLB lograron una reducción promedio del 42% en los desplazamientos, superando los resultados de Gorji et al. Esta mayor eficacia podría estar relacionada con las configuraciones específicas y optimizadas aplicadas en la estructura de estudio. Ambos estudios confirman la efectividad de los disipadores SLB para mejorar el rendimiento sísmico, sugiriendo que pueden ser aún más eficaces bajo ciertas condiciones estructurales.
- Farhad et al. (2024), encontraron que los amortiguadores metálicos en forma de U lograron una reducción del 30% en el desplazamiento inter-historia y del 35% en las fuerzas cortantes en estructuras de acero, mejorando la ductilidad y la capacidad de disipación de energía. En esta investigación, los disipadores histeréticos SLB y TADAS mostraron una eficacia comparable, con el SLB logrando una reducción del 42% en los desplazamientos y TADAS un 27%. Estos resultados confirman que, al igual que los amortiguadores en forma de U, los disipadores histeréticos son efectivos para mejorar la resistencia sísmica de las estructuras. La mayor reducción observada en esta investigación sugiere que los disipadores SLB pueden ofrecer beneficios adicionales bajo ciertas condiciones estructurales, reforzando su idoneidad para aplicaciones sismorresistentes.
- Patel et al. (2022), encontraron que los amortiguadores de fricción lograron reducir en un 30% las respuestas sísmicas de estructuras adyacentes, mejorando la

distribución de las fuerzas sísmicas y disminuyendo los picos de aceleración y tensiones inducidas. De manera similar, en esta investigación, los disipadores histeréticos SLB y TADAS mostraron una reducción significativa en los desplazamientos, con SLB alcanzando un 42% y TADAS un 27%. Estos resultados indican que, aunque los dispositivos analizados en ambos estudios operan mediante mecanismos diferentes, ambos enfoques son efectivos para mitigar las respuestas sísmicas y mejorar la estabilidad estructural. La investigación actual refuerza la idea de que la adecuada implementación de dispositivos de disipación de energía puede optimizar la resiliencia sísmica, independientemente del tipo de dispositivo utilizado.

• Kiral (2022), investigó los amortiguadores viscosos dependientes del desplazamiento, logrando una reducción del 40% en los desplazamientos laterales y una mejora del 35% en la capacidad de disipación de energía, destacando por su flexibilidad y adaptabilidad en tiempo real. En contraste, esta investigación se enfocó en disipadores de fluido viscoso pasivos, los cuales demostraron una reducción promedio del 48% en los desplazamientos. Además, se observó que estos disipadores absorben el 38,73% de la energía sísmica, disminuyendo significativamente la demanda sobre la estructura. Estos hallazgos indican que, aunque los dispositivos semiactivos de Kiral ofrecen ventajas en adaptabilidad, los sistemas pasivos de fluido viscoso son altamente efectivos para mejorar la resiliencia sísmica, proporcionando una absorción eficiente de la energía y una notable reducción de desplazamientos.

CONCLUSIONES

- El análisis comparativo realizado ha demostrado que cada tipo de disipador ofrece ventajas específicas en la mejora del comportamiento sísmico de la estructura. Los disipadores de fluido viscoso se destacaron por su capacidad para reducir desplazamientos y derivas laterales de manera más efectiva, mientras que los disipadores histeréticos SLB y TADAS proporcionaron una mayor rigidez estructural, disminuyendo los períodos de vibración y controlando las deformaciones. Estos resultados confirman que la implementación de disipadores, independientemente de su tipo, contribuye significativamente a mejorar la resiliencia sísmica de la infraestructura de la Universidad Tecnológica del Perú de Tacna, cumpliendo con los requerimientos normativos establecidos.
- El análisis dinámico modal espectral realizado con ETABS mostró que la estructura cumple con los límites establecidos por la norma E030 en ambas direcciones. Sin embargo, al realizar un análisis dinámico no lineal tiempo-historia, se observará que las derivas máximas en la dirección X superan el valor límite normativo, alcanzando un máximo de 0,0083. Estos resultados evidencian la necesidad de incorporar disipadores de energía en la dirección X para controlar las derivas y asegurar que la estructura cumpla con los requisitos de seguridad sísmica bajo condiciones más severas.
- A través de un proceso iterativo de simulaciones, se identificaron las ubicaciones óptimas para la instalación de los disipadores de energía. Se determinó que los disipadores de fluido viscoso eran más efectivos cuando se instalaban en los niveles superiores de la estructura, donde su capacidad de amortiguación redujo significativamente los desplazamientos y derivas laterales. Por otro lado, los disipadores histeréticos, como SLB y TADAS, mostraron un mejor rendimiento en los niveles inferiores, donde su capacidad para incrementar la rigidez estructural fue fundamental para mejorar la estabilidad general de la estructura.
- El análisis dinámico no lineal tiempo-historia confirmó que la implementación de disipadores en la estructura resultó en una significativa reducción de desplazamientos laterales, derivas máximas, y aceleraciones entre piso, manteniendo todas las respuestas sísmicas dentro de los límites normativos. El balance energético mostró que los disipadores de fluido viscoso absorben una porción significativa de la energía

sísmica, lo que reduce la demanda sobre la estructura. En conjunto, estos resultados demuestran la efectividad de los disipadores para mejorar la resiliencia sísmica de la estructura.

• El análisis costo-beneficio reveló que, aunque los disipadores de fluido viscoso tienen un costo de implementación más elevado, ofrecen ventajas significativas en términos de reducción de desplazamientos, mejora de la resiliencia sísmica y minimización del daño estructural. Cabe señalar que los costos presentados son referenciales y pueden variar dependiendo de las condiciones específicas del proyecto. Los disipadores histeréticos SLB y TADAS, a pesar de ser menos costosos, también brindan una mejora sustancial en la resistencia sísmica, lo que los convierte en opciones viables para proyectos con restricciones presupuestarias. La elección del tipo de disipador debe considerar tanto los beneficios estructurales como la viabilidad económica, asegurando una inversión óptima en la protección sísmica de la infraestructura.

RECOMENDACIONES

- Se recomienda que el área de infraestructura y mantenimiento de la Universidad Tecnológica del Perú considere la implementación de disipadores de energía en futuros proyectos de construcción y reforzamiento, seleccionando el tipo más adecuado en función de las necesidades específicas de cada estructura. Además, es fundamental realizar análisis previos detallados para asegurar que la selección del disipador maximice la resiliencia sísmica y cumpla con los requisitos normativos.
- Se recomienda que el área de infraestructura y mantenimiento de la Universidad Tecnológica del Perú priorice la incorporación de disipadores en la dirección X de la estructura, enfocándose en aquellos puntos críticos identificados por el análisis modal espectral. Además, se sugiere realizar revisiones periódicas y actualizaciones del análisis modal en caso de modificaciones estructurales o cambios en las normativas sismorresistentes.
- Se recomienda que el área de infraestructura y mantenimiento de la Universidad Tecnológica del Perú seguir un enfoque similar en futuros proyectos, llevando a cabo un proceso iterativo de simulaciones para determinar las ubicaciones óptimas de los disipadores. Además, es aconsejable documentar detalladamente estas ubicaciones y los criterios utilizados para su selección, facilitando la replicabilidad y la justificación técnica en futuros análisis.
- Se recomienda a los ingenieros estructurales del Perú continuar utilizando el análisis dinámico no lineal Tiempo-Historia como herramienta clave en la evaluación sísmica de estructuras. Este tipo de análisis debe ser integrado en la fase de diseño y evaluación de proyectos, asegurando que cualquier decisión sobre la implementación de disipadores esté respaldada por datos precisos y análisis detallados.
- Se recomienda que el área de planificación y finanzas de la Universidad Tecnológica del Perú realizar análisis costo-beneficio detallados en las fases iniciales de cada proyecto, considerando no solo los costos de implementación, sino también los beneficios a largo plazo en términos de reducción de daños y costos de reparación post-sismo. En proyectos con presupuestos ajustados, se deben explorar opciones de financiamiento o fases de implementación escalonadas para maximizar la protección sísmica sin comprometer la viabilidad económica.

I. REFERENCIAS BIBLIOGRÁFICAS

- Aguiar, R., Rodríguez, M., & Mora, D. (2016). *Análisis sísmico de estructuras con disipadores de energía ADAS o TADAS*. Barcelona: A.H. Barnat.
- Arias, F. (2012). El Proyecto de Investigación: Introducción a la metodología científica (6ta ed.). Caracas: Episteme.
- Babbie, E. (2021). The Practice of Social Research (15th ed.). Boston: Cengage Learning.
- Baquero, J., Almazán, J., & Tapia, N. (2022). Comparative study on the effectiveness of fluid viscous dampers and base isolation: an approach toward enhancing seismic performance of composite structures. *Innovative Infrastructure Solutions*, 805-820.
- Bozzo, L. M. (2024). Disipadores para protección sísmica SLB y perspectivas de futuro. *Revista Constructivo*, 45-60.
- Bozzo, L., Gaxiola, G., & Gonzales, H. (2016). Proceso de análisis y diseño utilizando disipadores sísmicos tipo SLB. España.
- Caballero Castro, L. F. (2022). Evaluación del coeficiente de disipación de energía R, en edificaciones de pórticos en acero, provistos con disipadores histeréticos metálicos triangulares tipo TADAS, localizadas en zona de amenaza sísmica alta. Bogotá, Colombia: Universidad Nacional de Colombia, Tesis posgrado.
- Cano, H., & Zumaeta, E. (2022). Diseño estructural de una edificación con disipadores de energía y análisis comparativo sísmico entre el edificio convencional y el edificio con disipadores de energía para un sismo severo. *Universidad Peruana de Ciencias Aplicadas*.
- Chen, L., & Cao, J. (2023). Disposición óptima de amortiguadores TADAS para el control de la deriva sísmica de edificios utilizando métodos iterativos acelerados. *Buildings*.
- Chen, L., & Jing, C. (2023). Optimum Arrangement of TADAS Dampers for Seismic Drift Control of Buildings Using Accelerated Iterative Methods. *Buildings*, 2720-2740.
- Chen, W., & Guo, X. (2022). Seismic Energy Dissipation of Structures with Metallic Dampers. Reston: Journal of Structural Engineering.
- Creswell, J., & Creswell, D. (2018). *Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (5th ed.).* Thousand Oaks: Sage Publications.

- Farhad, F., Farzaneh, E., Sina, E., & Mohammad, J. (2024). Effect of U-Shaped Metallic Dampers on the Seismic Performance of Steel Structures based on Endurance-Time Analysis. EE. UU.: University of Wisconsin-Milwaukee.
- Fuentes, J. (2020). Procedimientos para el análisis y diseño de estructuras con sistemas de disipación de energía en el Perú. *Pontificia Universidad Católica del Perú*.
- Gao, X., Li, Z., & Liu, W. (2021). *Mode shape recognition in complex structures using deep learning and modal data*. London: Journal of Sound and Vibration.
- García, Y., & Julca, D. (2022). Diseño estructural de un edificio de 06 niveles, para estimar deformación de rótulas plásticas en vigas en Chiclayo. Cliclayo: UCV.
- Gorji, A., Gorji, M., & Abdolmaleki, H. (2022). Numerical Study of Metallic Dampers' Effect on Seismic Performance of Concrete Frames. *Asian Journal of Civil Engineering*, 1085-1096.
- Hernández, R., Fernández, C., & Baptista, P. (2021). *Metodología de la investigación (7ma ed.)*. México: McGraw-Hill Education.
- Huerta, P. (2022). Desempeño sísmico de edificios multifamiliares de muros estructurales aplicando el método de espectro de capacidad. Lima: PUCP.
- Juárez, M., & Loayza, J. (2021). Análisis y Evaluación de la Vulnerabilidad Sísmica y Estados de Daño en Monumentos Históricos de Sillar en el Barrio de San Lázaro Arequipa. Arequipa: UCSM.
- Kim, J., & Lee, H. (2022). Seismic Performance of Shear Link Bozzo Dampers in High-rise Buildings. International Journal of Steel Structures. Berlin: Springer.
- Kim, S., & Chopra, A. (2017). Dynamics of Structures: Theory and Applications to Earthquake Engineering. *Journal of Earthquake Engineering*, 1-18.
- Kiral, A. (2022). Novel Displacement Dependent Viscous Damper for Semiactive Control of the Seismic Response of Multistorey Buildings. Reino Unido: University of Sheffield.
- Li, Y., & Zhang, H. (2021). *Impact of Geometric Configuration on Seismic Performance of Irregular Buildings*. Reston: Journal of Structural Engineering.
- Liu, X., & Chen, J. (2023). *Optimization of Damper Dimensions for Enhanced Seismic Performance*. Reston: Journal of Structural Engineering.

- Mamani, G. (2024). Evaluación de requerimientos de ductilidad para elementos de concreto armado resistentes a sismo en edificios con aislamiento sísmico. Lima: PUCP.
- Mamani, J. (2022). Estudio de límites de reforzamiento en estructuras históricas para mejorar su desempeño sísmico. Lima: PUCP.
- Mejía, R. (2021). Análisis del criterio columna fuerte viga débil en estructuras aporticadas de concreto armado. Lima: PUCP.
- Mendoz, C. (2023). Implementación y comparación de disipadores de fluido viscoso en el comportamiento sísmico de una edificación de una vez niveles ubicados en el distrito de Surquillo. *Universidad Privada del Norte*.
- Mendoza, C. (2023). Implementación y comparación de disipadores de fluido viscoso en el comportamiento sísmico de una edificación de once niveles ubicado en el distrito de Surquillo. *Repositorio de la Universidad Privada del Norte*, 50-68.
- Muñoz, E. (2021). DISIPADORES SHEAR LINK BOZZO (SLB). Lima: MHIA.
- Narváez, M. (2020). Análisis estructural con sistemas de protección sísmica del tipo de amortiguadores de Fluido viscoso. Lima: Instituto CCIP.
- Patel, C., & Jangid, R. (2022). *Dynamic Response of Adjacent Structures Connected by Friction Damper*. Mumbai: Indian Institute of Technology Bombay.
- Pérez, C., & Torres, R. (2022). Evaluación del desempeño sísmico de un edificio de muros estructurales de mediana altura en base a desplazamientos y costos de reparación probables. Lima: PUCP.
- Poma, J. (2019). Software educativo para la automatización del análisis no lineal estático pushover en estructuras de concreto armado. Lima: PUCP.
- Rinaldin, G., Amadio, C., & Fragiacomo, M. (2021). Rinaldin, G., Amadio, C., & Fragiacomo, M. (2021). Elsevier: Engineering Structures.
- Rodríguez, J., & López, R. (2021). Efficacy of Viscoelastic Dampers in High-rise Buildings under Seismic Excitations. Earthquake Engineering and Structural Dynamics, 2030-2045.

- Salas, M. (2021). Comparación de la respuesta estructural de una edificación utilizando espectros de diseño probabilísticos y espectros de la normativa vigente para la ciudad de Cajamarca. Cajamarca: UNC.
- Segura, M. (2021). Uso de aisladores y disipadores para mejorar el comportamiento sismorresistente de edificios altos en el Perú. Revisión sistemática 2010-2020. *Repositorio de la Universidad Privada del Norte*.
- Villareal, G., & Díaz de la Rosa, M. (2016). *Edificaciones con Disipadores Viscosos*. Lima: Centro Empresarial Reducto.
- Xu, Y., Zhang, J., & He, W. (2019). Seismic Performance of High-rise Buildings with Viscous Fluid Dampers. Nueva York: Journal of Structural Engineering.
- Yang, Z., & Wang, T. (2022). Effect of Number and Distribution of Dampers on Seismic Response of Structures. Londres: Journal of Earthquake Engineering.
- Zhang, J., & Xu, Y. (2018). Seismic Response of Structures with Displacement Control Devices. Londres: Engineering Structures.

MATRIZ DE CONSISTENCIA

Problema	Objetivos	Hipótesis	Variables/dimensiones e indicadores		Metodología
1.Interrogante principal	1.Objetivo general	1.Hipótesis general	Variable independiente	•	Tipo de investigación Básica
¿Cuál será el análisis comparativo del comportamiento sísmico de disipadores histeréticos SLB, TADAS y disipadores sísmicos de	Realizar un análisis comparativo del comportamiento sísmico de disipadores histeréticos SLB, TADAS y disipadores sísmicos de	El análisis comparativo del comportamiento sísmico de disipadores histeréticos SLB, TADAS y disipadores sísmicos de	Análisis comparativo del comportamiento sísmico. Indicadores	•	Diseño de la investigación No experimental
Fluido-Viscoso aplicados en la infraestructura de la Universidad Tecnológica del Perú de Tacna –	Fluido-Viscoso aplicados en la infraestructura de la Universidad Tecnológica del Perú de Tacna –	Fluido-Viscoso demostrara identificar la alternativa más eficaz en la resiliencia sísmica de la	Desplazamientos máximos (cm) Derivas máximas (cm/cm)	•	Ámbito de estudio Distrito de Tacna, Tacna
2024?	2024.	infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024.	 Fuerza cortante (Tonf) Aceleraciones máximas (m/s2) Curvas histeréticas (Tonf-cm) 	•	Población Edificación de 10 niveles en el distrito de Tacna
2.Interrogantes específicas	2.Objetivos específicos	2.Hipótesis específicas	Balance energético (Tonf/m)	•	Muestra
a) ¿Qué resultado se obtendrá al evaluar la situación actual y	a) Evaluar la situación actual y realizar un análisis dinámico modal	a) Al realizar el análisis dinámico modal espectral proporcionará	Medición Razón		Universidad Tecnológica del Perú
realizar un análisis dinámico modal espectral mediante el software ETABS para justificar la incorporación de los disipadores de	espectral mediante el software ETABS para justificar la incorporación de los disipadores de energía SLB, TADAS y Fluido-	información fundamental para justificar y respaldar la necesidad de incorporar los disipadores de energía SLB, TADAS y Fluido-	Variable dependiente Disipadores histeréticos SLB, TADAS y disipadores sísmicos de Fluido-Viscoso.	•	Técnicas de recolección de datos Documental
energía SLB, TADAS y Fluido- Viscoso en la infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024?	Viscoso en la infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024.	Viscoso como medida efectiva de mejorar la resiliencia sísmica de la infraestructura de la Universidad Tecnológica del Perú de Tacna –	Indicadores • Configuración geométrica	•	Instrumentos Etabs, excel, sap200, matlab, mathcad, etc.
b) ¿Cuáles serán las ubicaciones estratégicas de la incorporación de los disipadores de energía SLB, TADAS y Fluido-Viscoso en los pórticos de la infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024?	b) Identificar y definir estratégicamente las ubicaciones de la incorporación de los disipadores de energía SLB, TADAS y Fluido-Viscoso en los pórticos de la infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024.	b) Este análisis detallado se centrará en determinar las posiciones más eficaces para maximizar la capacidad de estos disipadores de energía SLB, TADAS y Fluido-Viscoso y mejorar la resiliencia sísmica de la infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024.	 Dimensión del disipador Cantidad de dispositivos disipadores Ubicación del dispositivo disipador Medición Razón 		

- c) ¿Cuál será el análisis dinámico no lineal Tiempo Historia con el objetivo de determinar los desplazamientos laterales entre piso, derivas máximas, fuerzas cortantes, aceleraciones máximas entre piso, y llevar a cabo un balance energético implementando disipadores de energía SLB, TADAS y Fluido-Viscoso de la infraestructura de la Universidad Tecnológica del Perú de Tacna 2024?
- d) ¿Cuál será el análisis costobeneficio para evaluar la viabilidad económica de implementar disipadores de energía SLB, TADAS y Fluido-Viscoso en la infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024?
- c) Realizar el análisis dinámico no lineal Tiempo-Historia con el objetivo de determinar los desplazamientos laterales entre piso, derivas máximas, fuerzas cortantes, aceleraciones máximas entre piso, y llevar a cabo un balance energético implementando disipadores de energía SLB, TADAS y Fluido-Viscoso de la infraestructura de la Universidad Tecnológica del Perú de Tacna 2024.
- d) Realizar un análisis costobeneficio para evaluar la viabilidad económica de implementar disipadores de energía SLB, TADAS y Fluido-Viscoso en la infraestructura de la Universidad Tecnológica del Perú de Tacna – 2024.
- c) Al realizar el análisis dinámico no lineal Tiempo-Historia permitirá la evaluación de la respuesta sísmica con la implementación de los disipadores de energía SLB, TADAS y Fluido-Viscoso en la infraestructura de la Universidad Tecnológica del Perú de Tacna demostrara que los disipadores optimizan la resiliencia sísmica y se encuentran dentro del rango admisible según la norma E030 2024.
- d) Al realizar el análisis costobeneficio abarcara costos de implementación, mantenimiento y los beneficios asociados a la mejora de la resiliencia sísmica, proporcionando una visión completa para la toma de decisiones informada en la infraestructura de la Universidad Tecnológica del Perú de Tacna 2024.

ANEXOS

ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO SÍSMICO DE DISIPADORES HISTERÉTICOS SLB, TADAS Y DISIPADORES SÍSMICO DE FLUIDO-VISCOSO APLICADOS EN LA INFRAESTRUCTURA DE LA UNIVERSIDAD TÉCNOLÓGICO DEL PERÚ DE TACNA - 2024

ESPECIFICACIONES TÉCNICAS

EN PROPORCION DE 1:10 + 30% DE PIEDRA GRANDE (MAXIMO Ø 6")

f'c : 280 Kg/cm2

f'c : 280 Kg/cm2

f'c : 280 Kg/cm2

f'c : 175 Kg/cm2 fy : 4200 Kg/cm2

: 250 Kg/m2

: 100 Kg/m2

7.50 cm.

5.00 cm.

2.50 cm.

2.50 cm.

Usar CEMENTO TIPO HS solo en el 1er nivel en elementos en contacto con el suel

Las juntas entre columnas y columnetas serán de sello elastomerico e=1".

1) No debe cimentarse sobre turba, suelo orgánico, tierra vegetal, desmonte, relleno sanitario o relleno artificial. Estos materiales inadecuados deberán ser removidos en su totalidad antes de construir la edificacion y ser reemplazados con materiales adecuados debidamente compactados. 2) En caso de que a la profundidad indicada se encuentre material suelto ó relleno profundizar excavacion por lo menos 30cm. en terreno natural y

3) En donde se requiera rellenar para conformar el falso piso se debera usar afirmado compactado al 95% del proctor modificado. La compactacion debera

PARAMETROS DE DISEÑO SISMORESISTENTES

ANALISIS DINAMICO MODAL - ESPECTRAL

U = 1.50

Z = 0.45 (Tacna)

Tp = 0.40 seg.TL= 2.50 seg.

g = 9.81 m/seg.

6 (MUROS ESTRUCTURALES)

1.063 seg 0.784 seg 0.568 seg

1582.65 Tnf 2503.50 Tnf

1563.06 Tnf 2342.60 Tnf

3.42

2.19

S1 = 1.00 (Suelo Rígido)

7 (MUROS ESTRUCTURALES Y PORTICOS)

 $\mathsf{X}\mathsf{-}\mathsf{X}$

0.0048

0.0058

0.0062

1.00 0.0063 0.66 0.0056 0.35 0.0045

0.0052

0.0053

0.0053

0.0053

0.0051

0.0044

0.0039

ser con plancha vibradora en capas no mas de 20cm

· Vaciar columnas amarradas a los muros en forma dentada. · Evitar empalmes y traslapes en zonas de máximo esfuerzo.

Usar cemento tipo IP en los niveles superiores.

f'c : 175Kg/cm2, MEZCLA CEMENTO HS/HORMIGON EN PROPORCION SEGÚN DISEÑO DE MEZCLAS DE CONCRETO.

CONCRETO SIMPLE (CICLOPEO)
CIMIENTOS — SUBZAPATAS :

SOBRECIMIENTOS:

CONCRETO ARMADO

SOBRECARGAS

RECUBRIMIENTOS ZAPATAS

NOTAS GENERALES

COLUMNAS

LOSA ALIGERADA

SS.HH. Y AULAS AZOTEA

VIGA CIMENTACION

COLUMNAS Y VIGAS ESCALERA Y LOSAS

Curar concreto por vía humeda.

RECOMENDACIONES ADICIONALES

vacear falsa zapata.

PARAMETROS SISMICOS:

Factor de Zona :

Uso e Importancia :

COEFICIENTE DE REDUCCION:

FUERZA CORTANTE EN LA BASE ESTÁTICA:

FUERZA CORTANTE EN LA BASE DINÁMICO:

3.49

3.18

DESPLAZAMIENTOS Y DERIVAS

R DY:

MODOS DE VIBRACIÓN:

SOBRECIMIENTO

VIGA DE CIMENTACION

SOBRECIMIENTO ARMADO

MUROS DE CONTENCIÓN

COLUMNETAS Y VIGUETAS

f'c : MEZCLA CEMENTO/HORMIGON

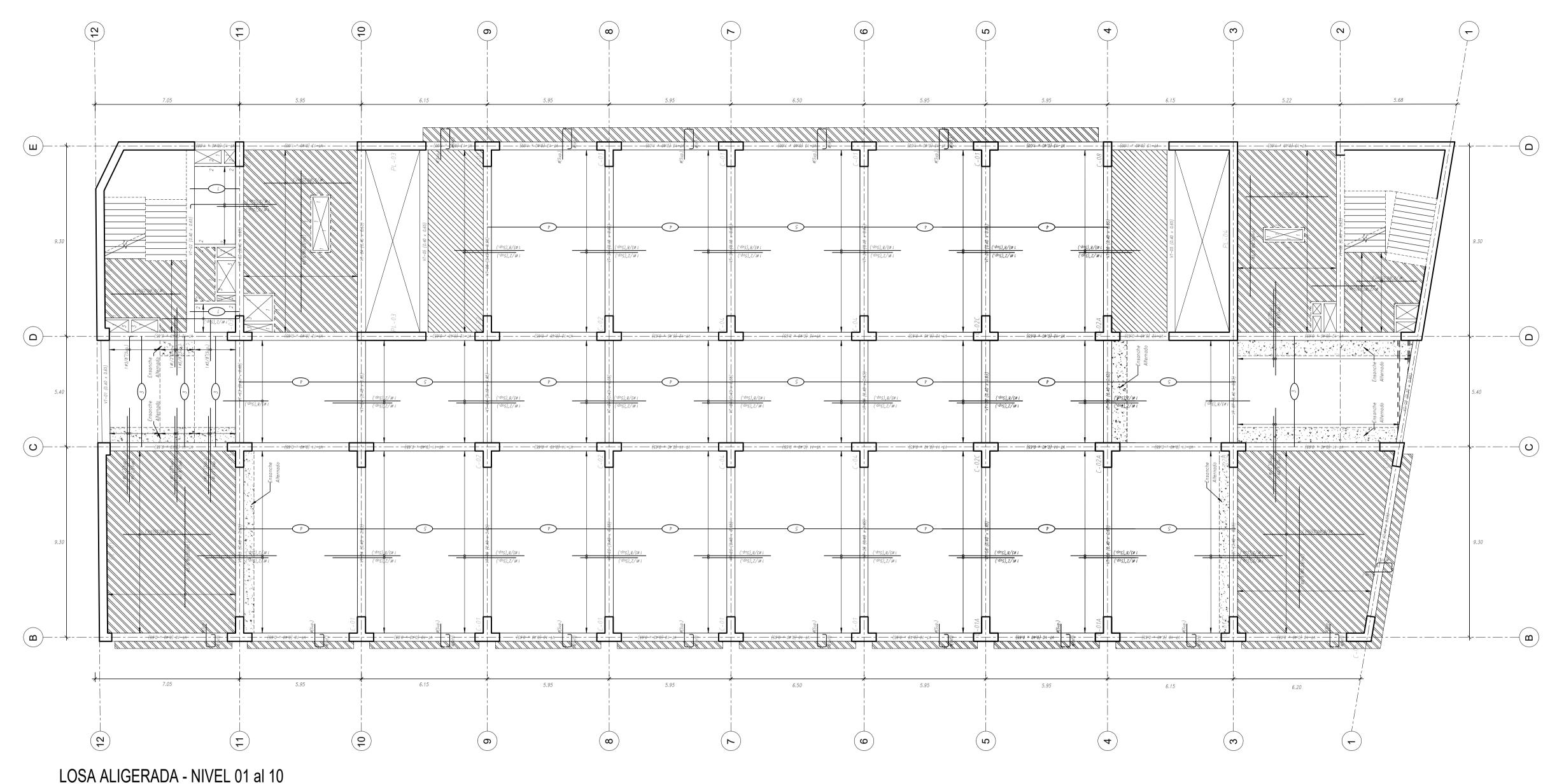
"ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO SÍSMICO DE DISIPADORES HISTERÉTICOS SLB, TADAS Y DISIPADORES SÍSMICOS DE FLUIDO-VISCOSO

APLICADOS EN LA INFRAESTRUCTURA DE LA

UNIVERSIDAD

ESTRUCTURAS

TECNOLÓGICA DEL PERÚ DE TACNA - 2024" ESPECIALIDAD:


LOSA ALIGERADA PRIMER NIVEL al DÉCIMO NIVEL

ESCALA: INDICADA | SET-2024

> PROFESIONAL DE POSTGRADO

APELLIDOS:

HERNÁN GIAN PIERRE OROCOLLO CAUNA

Ø	REFUERZO INFERIOR	REFUERZO SUPERIOR		
, v	H : CUALQUIERA	H < 0.30	H > 0.30	
3/8"	0.40 m	0.30 m	0.45 m	
1/2"	0.40 m	0.35 m	0.50 m	
5/8"	0.50 m	0.40 m	0.60 m	

0.50 m

0.70 m

VALORES DE "a"

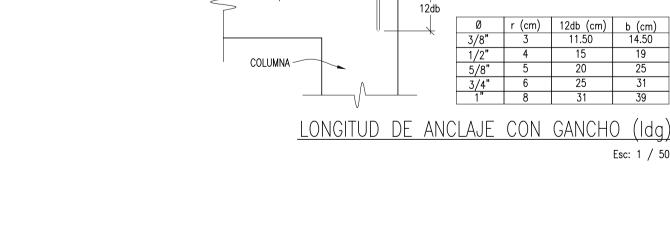
1.20 m 1.25 m a.- NO EMPALMAR MAS DEL 50% DEL AREA TOTAL DE UNA MISMA SECCION. b.— EN CASO DE NO EMPALMA PORCENTAJES ESPECIFICAD

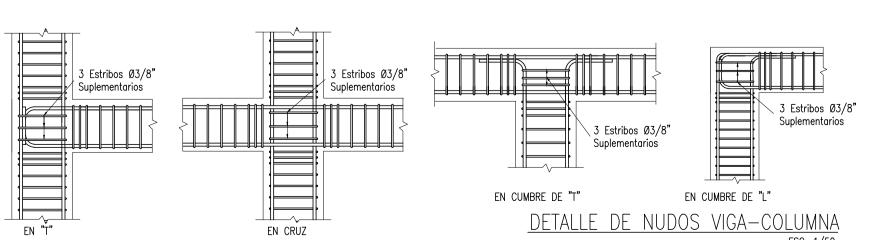
0.65 m

EN UN 30%. c.— PARA ALIGERADIS Y VIGAS SOBRE LOS APOYOS, SIEN CM., PARA FIERROS DE 3/

DETALLE DE EMPA

EL PROCEDIMIENTO CONSTRUCTIVO PARA EL VACIADO DE LA LOSA DE CONCRETO ARMADO DE TECHO Y LAS VIGAS QUE LA SOPORTAN SE REALIZARÁ DE LA SIGUIENTE


/ACIADO DE LOS PAÑOS INDICADOS EN EL PUNTO


SUPERIOR SE COLOCARÁN BASTONES SUPERIORES

6) LA FRANJA DE VACIADO POSTERIOR TÍPICA ES DE 1 METRO DE ANCHO EN PROMEDIO, SALVO SE INDIQUE LO CONTRARIO. EN EL PLANO SE MUESTRA ACHURADA CON GRUPOS DE CUATRO LINEAS.

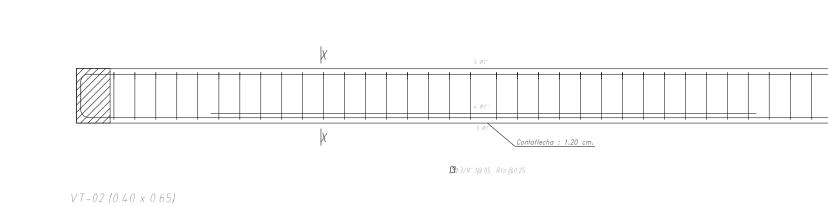
7) DE NO CONSIDERARSE LAS FRANJAS DE VACIADO, SE PRESENTARÁN FISURAS PARA LA CUALES DEBERÁ CONSIDERARSE UN SELLADO SIMPLE DE FISURAS DE ESPESOR MENOR A 2mm Y UN SELLADO CON INYECCIÓN DE MORTERO DE ALTA RESISTENCIA EN FISURAS DE MAYOR ESPESOR.

	Vigas continu	uas L > 6m
	L/h	L/f
	10	500
	11	450
	12	400
L/2	13	350
	14	300
	15	250
CONTRAFLECHA PARA VIGAS DE LUZ LIBRE MAYOR A 6 METROS	16	200
	17	175
) LA CONTRAFLECHA SE DETERMINARÁ POR TRAMOS DE ACUERDO AL PERALTE Y LA LUZ LIBRE DE LA VIGA, CONSIDERANDO LAS RELACIONES MOSTRADAS EN LA TABLA ADJUNTA.	18	150
) LA CONTRAFLECHA "f" SE MEDIRÁ EN EL CENTRO DEL TRAMO.) SI L/h ES MENOR A 10 NO SE COLOCARÁ CONTRAFLECHA	19	125
SI L/h ES MAYOR A 20 SE DEBERÁ CONSULTAR AL PROYECTISTA	20	100

Longitud de Anclaje con Gancho (ldg)

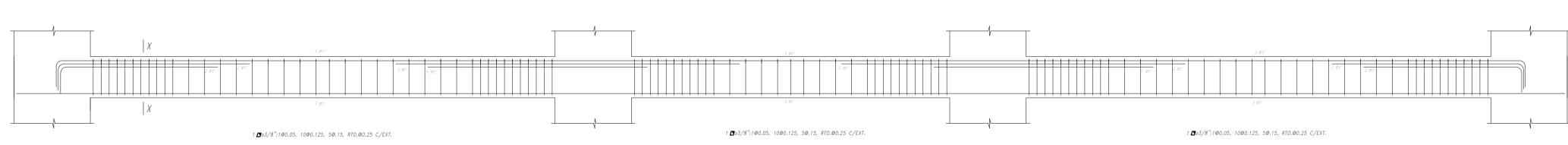
MARSE EN LAS ZONAS INDICADAS O CON LOS CADAS AUMENTAR LA LONGITUD DE EMPALME	1) SE VACIARÁN LOS PAÑOS ENTRE LAS FRANJAS DE VACIADO POSTERIOR INDICADAS EN PLANTA.
	2) SE VACIARÁN LAS FRANJAS DE VACIADO POSTERIOR, POR LO MENOS 30 DÍAS DESPUÉS DE HABER FINALIZADO EL VAC
AS CHATAS, EL ACERO INFERIOR SE EMPALMA ENDO LA LONGITUD DEL EMPALME IGUAL A 50	(1).
3/8", 60 CM. PARA 1/2" Y 70 CM. PARA 5/8".	3) LAS JUNTAS DE VACIADO DE VIGAS Y LOSAS EN LAS FRANJAS DE VACIADO POSTERIOR DEBERÁN SER DENTADAS.
	4) SE DEBERÁ UTILIZAR UN PUENTE DE ADHERENCIA EPÓXICO DE TIEMPO DE TRABAJABILIDAD PROLONGADO.
<u>ALME DE ACERO EN VIGAS</u>	5) EL REFUERZO SERÁ CONTINUO A TRAVÉS DE LAS FRANJAS DE VACIADO POSTERIOR Y DONDE NO HAYA REFUERZO SUF
ESC: 1 / 25	DE Ø3/8@20 QUE CRUCEN TRANSVERSALMENTE LA FRANJA Y PENETREN .40 EN AMBOS BORDES.


INDICACIONES PARA EL VACIADO DE LA LOSA

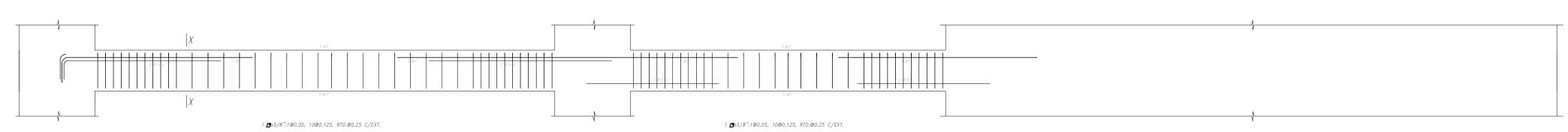

ESTRUCTURAS

1 **酉**+1Cø3/8":1@0.05, 10@0.125, RTO.@0.15 C/EXT.

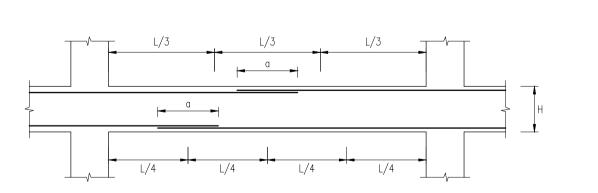
ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO SÍSMICO DE DISIPADORES HISTERÉTICOS SLB, TADAS Y DISIPADORES SÍSMICO DE FLUIDO-VISCOSO APLICADOS EN LA INFRAESTRUCTURA DE LA UNIVERSIDAD TÉCNOLÓGICO DEL PERÚ DE TACNA - 2024


1 **酉**∘3/8":1@0.05, 10@0.125, 5@.15, RTO.@0.25 C/EXT. 1 **酉**03/8":1@0.05, 10@0.125, RTO.@0.25 C/EXT. 1 **5**3/8":1@0.05, 10@0.125, 5@.15, RTO.@0.25 C/EXT.

1 **酉**03/8":1@0.05, 10@0.125, RTO.@0.25 C/EXT.


VT-04 (0.40 x 0.65) TECHO 2° AL 9° PISO

VT-01 (0.40 x 0.65) TECHO 2° AL 9° PISO


VT-03 (0.40 x 0.65) TECHO 2° AL 9° PISO

VT-06 (0.40 x 0.65) TECHO 2° AL 9° PISO

VT-07 (0.40 x 0.65) TECHO 2° AL 9° PISO

VALORES DE "a"					
Ø	REFUERZO INFERIOR	REFUERZO	SUPERIOR		
w	H : CUALQUIERA	H < 0.30	H > 0.30		
3/8"	0.40 m	0.30 m	0.45 m		
1/2"	0.40 m	0.35 m	0.50 m		
5/8"	0.50 m	0.40 m	0.60 m		
3/4"	0.65 m	0.50 m	0.70 m		
1"	1.20 m	1.20 m	1.25 m		

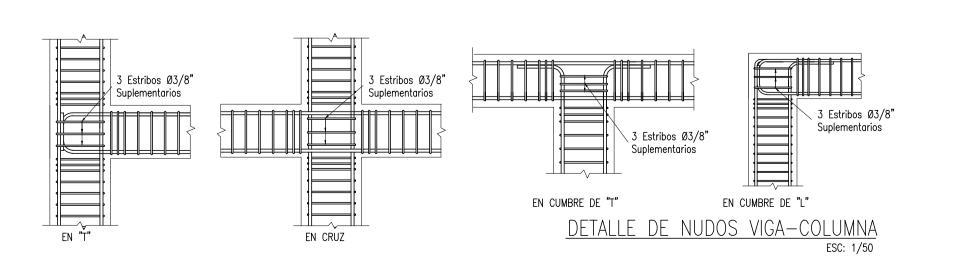
- a.- NO EMPALMAR MAS DEL 50% DEL AREA TOTAL DE UNA MISMA SECCION. b.— EN CASO DE NO EMPALMARSE EN LAS ZONAS INDICADAS O CON LOS PORCENTAJES ESPECIFICADAS AUMENTAR LA LONGITUD DE EMPALME
- c.- PARA ALIGERADIS Y VIGAS CHATAS, EL ACERO INFERIOR SE EMPALMA SOBRE LOS APOYOS, SIENDO LA LONGITUD DEL EMPALME IGUAL A 50 CM., PARA FIERROS DE 3/8", 60 CM. PARA 1/2" Y 70 CM. PARA 5/8".

DETALLE DE EMPALME DE ACERO EN VIGAS

	Vigas continu	uas L > 6m
	L/h	L/f
	10	500
	11	450
	12	400
L/2	13	350
	14	300
	15	250
CONTRAFLECHA PARA VIGAS DE LUZ LIBRE MAYOR A 6 METROS	16	200
	17	175
) LA CONTRAFLECHA SE DETERMINARÁ POR TRAMOS DE ACUERDO AL PERALTE Y LA LUZ LIBRE DE LA VIGA, CONSIDERANDO LAS RELACIONES MOSTRADAS EN LA TABLA ADJUNTA.	18	150
) LA CONTRAFLECHA "f" SE MEDIRÁ EN EL CENTRO DEL TRAMO.) SI L/h ES MENOR A 10 NO SE COLOCARÁ CONTRAFLECHA	19	125
SI L/h ES MAYOR A 20 SE DEBERÁ CONSULTAR AL PROYECTISTA	20	100

INDICACIONES PARA EL VACIADO DE LA LOSA
EL PROCEDIMIENTO CONSTRUCTIVO PARA EL VACIADO DE LA LOSA DE CONCRETO ARMADO DE TECHO Y LAS VIGAS QUE LA SOPORTAN SE REALIZARÁ DE LA SIGUIENTE MANERA:
1) SE VACIARÁN LOS PAÑOS ENTRE LAS FRANJAS DE VACIADO POSTERIOR INDICADAS EN PLANTA.
2) SE VACIARÁN LAS FRANJAS DE VACIADO POSTERIOR, POR LO MENOS 30 DÍAS DESPUÉS DE HABER FINALIZADO EL VACIADO DE LOS PAÑOS INDICADOS EN EL PUNTO (1).
3) LAS JUNTAS DE VACIADO DE VIGAS Y LOSAS EN LAS FRANJAS DE VACIADO POSTERIOR DEBERÁN SER DENTADAS.

3) LAS JUNTAS DE VACIADO DE VIGAS Y LOSAS EN LAS FRANJAS DE VACIADO POSTERIOR DEBERAN SER DENTADAS. 4) SE DEBERÁ UTILIZAR UN PUENTE DE ADHERENCIA EPÓXICO DE TIEMPO DE TRABAJABILIDAD PROLONGADO.


5) EL REFUERZO SERÁ CONTINUO A TRAVÉS DE LAS FRANJAS DE VACIADO POSTERIOR Y DONDE NO HAYA REFUERZO SUPERIOR SE COLOCARÁN BASTONES SUPERIORES DE Ø3/8@20 QUE CRUCEN TRANSVERSALMENTE LA FRANJA Y PENETREN .40 EN AMBOS BORDES.

6) LA FRANJA DE VACIADO POSTERIOR TÍPICA ES DE 1 METRO DE ANCHO EN PROMEDIO, SALVO SE INDIQUE LO CONTRARIO. EN EL PLANO SE MUESTRA ACHURADA CON GRUPOS DE CUATRO LINEAS.

7) DE NO CONSIDERARSE LAS FRANJAS DE VACIADO, SE PRESENTARÁN FISURAS PARA LA CUALES DEBERÁ CONSIDERARSE UN SELLADO SIMPLE DE FISURAS DE ESPESOR MENOR A 2mm Y UN SELLADO CON INYECCIÓN DE MORTERO DE ALTA RESISTENCIA EN FISURAS DE MAYOR ESPESOR.

VIGA	1,	Ø /2" /8"	laje con Gancl f'c = 210 kg 28 cm 35 cm	
12db		1"	42 cm 56 cm	
COLUMNA	Ø 3/8" 1/2" 5/8"	r (cm) 3 4 5	12db (cm) 11.50 15 20	b (cm) 14.50 19 25
	3/4"	6 8	25 31	31 39
LONGITUD DE ANC	LAJE	CON	GANCH() (ldg)

LONGITUD	DE	ANCLAJE	CON	GANCHO	(Idg)
				Esc:	1 / 50

	ICACIONES TECNICAS
CONCRETO SIMPLE (CICLOPEO) CIMIENTOS – SUBZAPATAS :	
f'c : MEZCLA CEMENTO/HOF EN PROPORCION DE 1:10 +	RMIGON + 30% DE PIEDRA GRANDE (MAXIMO Ø 6")
SOBRECIMIENTOS:	
f'c : 175Kg/cm2, MEZCLA EN PROPORCION SEGÚN DIS	CEMENTO HS/HORMIGON SEÑO DE MEZCLAS DE CONCRETO.
CONCRETO ARMADO	
ZAPATAS	f'c : 280 Kg/cm2
VIGA DE CIMENTACION	f'c : 280 Kg/cm2
SOBRECIMIENTO ARMADO	f'c : 175 Kg/cm2
COLUMNAS	f'c : 280 Kg/cm2
MUROS DE CONTENCIÓN	
LOSA ALIGERADA	f'c : 280 Kg/cm2
COLUMNETAS Y VIGUETAS	
ACERO	fy : 4200 Kg/cm2
SOBRECARGAS	
CORREDORES	: 400 Kg/m2
SS.HH. Y AULAS	: 250 Kg/m2
AZOTEA	: 100 Kg/m2
RECUBRIMIENTOS	
	: 7.50 cm.
VIGA CIMENTACION	: 5.00 cm.
SOBRECIMIENTO	: 2.50 cm.
COLUMNAS Y VIGAS	
ESCALERA Y LOSAS	: 2.50 cm.
NOTAS GENERALES	
- Vaciar columnas amarradas a la	os muros en forma dentada.
— Evitar empalmes y traslapes en	
- Curar concreto por vía humeda.	
	n el 1er nivel en elementos en contacto con el s
- Usar cemento tipo IP en los niv	
- Las juntas entre columnas y co	olumnetas serán de sello elastomerico e=1".
RECOMENDACIONES ADICIONALES :	
	rba, suelo orgánico, tierra vegetal, desmonte,
•	tificial. Estos materiales inadecuados deberán
ser removidos en su totalida	
	adecuados debidamente compactados.
	lidad indicada se encuentre material suelto
	icion por lo menos 30cm. en terreno natural y
vacear falsa zapata.	51011 por 10 11101100 0001111 011 01110110 111111
vaccai iaisa zapata.	

3) En donde se requiera rellenar para conformar el falso piso se debera usar afirmado compactado al 95% del proctor modificado. La compactacion debera

PARAMETROS DE DISEÑO SISMORESISTENTES

ANALISIS DINAMICO MODAL - ESPECTRAL

Z = 0.45 (Tacna)

Tp= 0.40 seg.

TL= 2.50 seg.g = 9.81 m/seg.

1.063 seg 0.784 seg 0.568 seg

1582.65 Tnf

2503.50 Tnf

1563.06 Tnf 2342.60 Tnf

3.42

2.19

1.00

0.66 0.35

0.0048

0.0058

0.0062

0.0063

0.0056

0.0045

0.0052

0.0053

0.0053

0.0053

0.0044

0.0039

0.0033

Grava bien gradada muy densa S1 = 1.00 (Suelo Rígido)

7 (MUROS ESTRUCTURALES Y PORTICOS)

6 (MUROS ESTRUCTURALES)

U = 1.50

PARAMETROS SISMICOS:

Factor de Zona :

Uso e Importancia :

COEFICIENTE DE REDUCCION:

FUERZA CORTANTE EN LA BASE ESTÁTICA:

FUERZA CORTANTE EN LA BASE DINÁMICO:

 $\mathsf{X}\mathsf{-}\mathsf{X}$

3.49

3.18

0.39

DESPLAZAMIENTOS Y DERIVAS

MODOS DE VIBRACIÓN:

ser con plancha vibradora en capas no mas de 20cm

ESPECIFICACIONES TÉCNICAS

"ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO SÍSMICO DE DISIPADORES

HISTERÉTICOS SLB, TADAS Y DISIPADORES SÍSMICOS DE FLUIDO-VISCOSO APLICADOS EN LA INFRAESTRUCTURA DE LA UNIVERSIDAD TECNOLÓGICA DEL PERÚ DE TACNA - 2024"

ESPECIALIDAD: ESTRUCTURAS

PLANO:

VIGAS TÍPICAS I

ESCALA: INDICADA SET-2024

> PROFESIONAL DE POSTGRADO

ING. HERNÁN GIAN PIERRE OROCOLLO CAUNA

ESTRUCTURAS

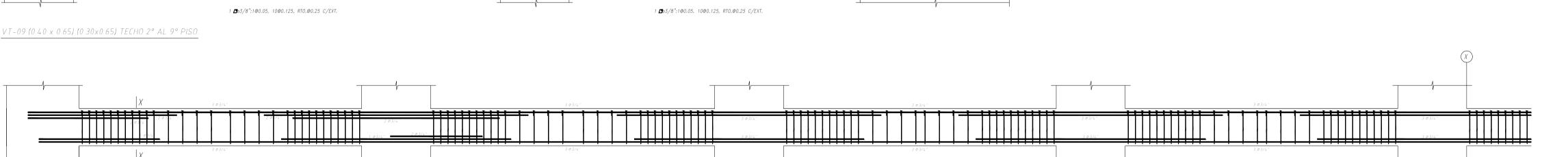
1 **酉**03/8":1@0.05, 10@0.125, RTO.@0.25 C/EXT.

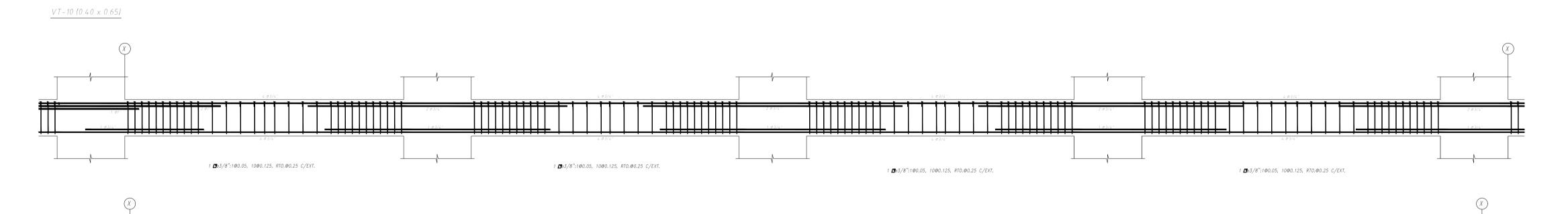
DOBLA CON GANCHO CORTAR 10

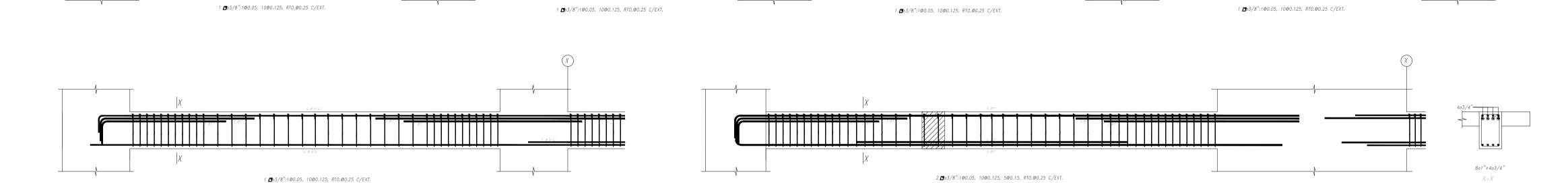
1 **酉**03/8":1@0.05, 10@0.125, RTO.@0.25 C/EXT.

ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO SÍSMICO DE DISIPADORES HISTERÉTICOS SLB, TADAS Y DISIPADORES SÍSMICO DE FLUIDO-VISCOSO APLICADOS EN LA INFRAESTRUCTURA DE LA UNIVERSIDAD TÉCNOLÓGICO DEL PERÚ DE TACNA - 2024

1 **酉**03/8":1@0.05, 10@0.125, RTO.@0.25 C/EXT.




E TACNA MENCIÓN


CON D

UNI Stría

1 **△**03/8":1@0.05, 10@0.125, RTO.@0.25 C/EXT.

VT-12 (0.40 x 0.65)

ESPECIFICACIONES TÉCNICAS CONCRETO SIMPLE (CICLOPEO) CIMIENTOS — SUBZAPATAS : f'c : MEZCLA CEMENTO/HORMIGON EN PROPORCION DE 1:10 + 30% DE PIEDRA GRANDE (MAXIMO Ø 6") SOBRECIMIENTOS: f'c : 175Kg/cm2, MEZCLA CEMENTO HS/HORMIGON EN PROPORCION SEGÚN DISEÑO DE MEZCLAS DE CONCRETO. CONCRETO ARMADO ZAPATAS f'c : 280 Kg/cm2 f'c : 280 Kg/cm2 VIGA DE CIMENTACION SOBRECIMIENTO ARMADO f'c : 175 Kg/cm2 COLUMNAS f'c : 280 Kg/cm2 MUROS DE CONTENCIÓN f'c : 280 Kg/cm2 LOSA ALIGERADA f'c : 280 Kg/cm2 COLUMNETAS Y VIGUETAS f'c : 175 Kg/cm2 **ACERO** fy : 4200 Kg/cm2 SOBRECARGAS 400 Kg/m2 CORREDORES : 250 Kg/m2 SS.HH. Y AULAS AZOTEA : 100 Kg/m2 RECUBRIMIENTOS ZAPATAS 7.50 cm. : 5.00 cm. VIGA CIMENTACION SOBRECIMIENTO 2.50 cm. COLUMNAS Y VIGAS 4.00 cm. ESCALERA Y LOSAS 2.50 cm. NOTAS GENERALES · Vaciar columnas amarradas a los muros en forma dentada. · Evitar empalmes y traslapes en zonas de máximo esfuerzo. Curar concreto por vía humeda. - Usar CEMENTO TIPO HS solo en el 1er nivel en elementos en contacto con el suelo Usar cemento tipo IP en los niveles superiores. - Las juntas entre columnas y columnetas serán de sello elastomerico e=1". RECOMENDACIONES ADICIONALES: 1) No debe cimentarse sobre turba, suelo orgánico, tierra vegetal, desmonte, relleno sanitario o relleno artificial. Estos materiales inadecuados deberán ser removidos en su totalidad antes de construir la edificacion y ser reemplazados con materiales adecuados debidamente compactados. 2) En caso de que a la profundidad indicada se encuentre material suelto δ relleno profundizar excavacion por lo menos 30cm. en terreno natural y vacear falsa zapata. 3) En donde se requiera rellenar para conformar el falso piso se debera usar afirmado compactado al 95% del proctor modificado. La compactacion debera

ser con plancha vibradora en capas no mas de 20cm

PARAMETROS SISMICOS:

Factor de Zona :

Uso e Importancia :

COEFICIENTE DE REDUCCION:

FUERZA CORTANTE EN LA BASE ESTÁTICA:

FUERZA CORTANTE EN LA BASE DINÁMICO:

 $\mathsf{X}\mathsf{-}\mathsf{X}$

3.49

3.18

2.47

1.20 0.77

0.39

DESPLAZAMIENTOS Y DERIVAS

R DX:

R DY:

MODOS DE VIBRACIÓN:

"ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO SÍSMICO DE DISIPADORES HISTERÉTICOS SLB, TADAS PARAMETROS DE DISEÑO SISMORESISTENTES Y DISIPADORES SÍSMICOS ANALISIS DINAMICO MODAL - ESPECTRAL DE FLUIDO-VISCOSO APLICADOS EN LA INFRAESTRUCTURA DE LA UNIVERSIDAD Z = 0.45 (Tacna) TECNOLÓGICA DEL PERÚ U = 1.50DE TACNA - 2024"

Grava bien gradada muy densa S1 = 1.00 (Suelo Rígido) Tp = 0.40 seg.TL= 2.50 seg. g = 9.81 m/seg.

7 (MUROS ESTRUCTURALES Y PORTICOS)

6 (MUROS ESTRUCTURALES)

1.063 seg 0.784 seg 0.568 seg

1582.65 Tnf 2503.50 Tnf

1563.06 Tnf 2342.60 Tnf

3.42

3.02

2.19

1.00 0.66 0.35

 $\mathsf{X} - \mathsf{X}$

0.0048

0.0053

0.0058

0.0062

0.0063

0.0056

0.0045

0.0052

0.0053

0.0053

0.0053

0.0051

0.0044

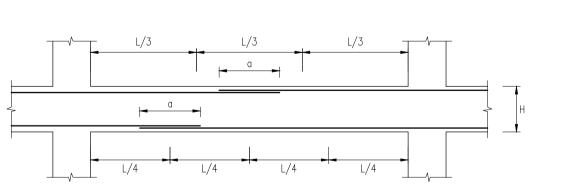
0.0039

0.0033

ESPECIALIDAD:
ESTRUCTURAS

PLANO:

VIGAS TÍPICAS II

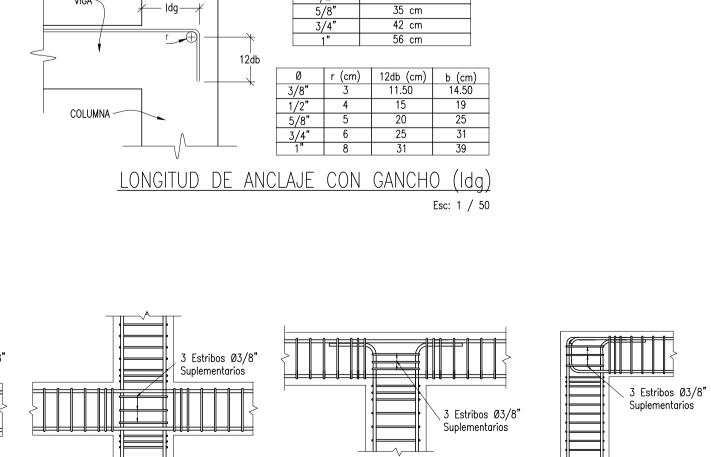

ESCALA: SET-2024 INDICADA

ESCUELA: PROFESIONAL DE POSTGRADO

APELLIDOS: ING. HERNÁN GIAN PIERRE OROCOLLO CAUNA

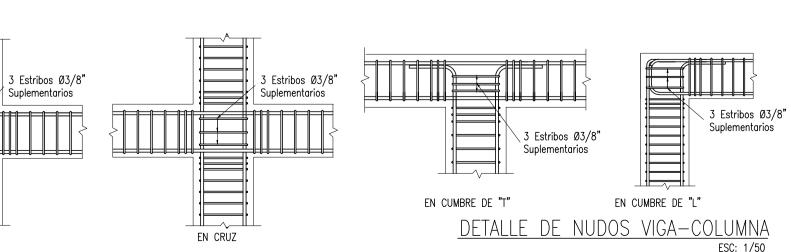
VIGAS TÍPICAS II

ESC: 1/50


VT-11 (0.40 x 0.65)

VALORES DE "a"						
	Ø	REFUERZO INFERIOR	REFUERZO	SUPERIOR		
		H : CUALQUIERA	H < 0.30	H > 0.30		
	3/8"	0.40 m	0.30 m	0.45 m		
	1/2"	0.40 m	0.35 m	0.50 m		
	5/8"	0.50 m	0.40 m	0.60 m		
	3/4"	0.65 m	0.50 m	0.70 m		
	1"	1.20 m	1.20 m	1.25 m		

- a.- NO EMPALMAR MAS DEL 50% DEL AREA TOTAL DE UNA MISMA SECCION. b.— EN CASO DE NO EMPALMARSE EN LAS ZONAS INDICADAS O CON LOS PORCENTAJES ESPECIFICADAS AUMENTAR LA LONGITUD DE EMPALME
- EN UN 30%. c.- PARA ALIGERADIS Y VIGAS CHATAS, EL ACERO INFERIOR SE EMPALMA SOBRE LOS APOYOS, SIENDO LA LONGITUD DEL EMPALME IGUAL A 50 CM., PARA FIERROS DE 3/8", 60 CM. PARA 1/2" Y 70 CM. PARA 5/8".
- DETALLE DE EMPALME DE ACERO EN VIGAS ESC: 1 / 25

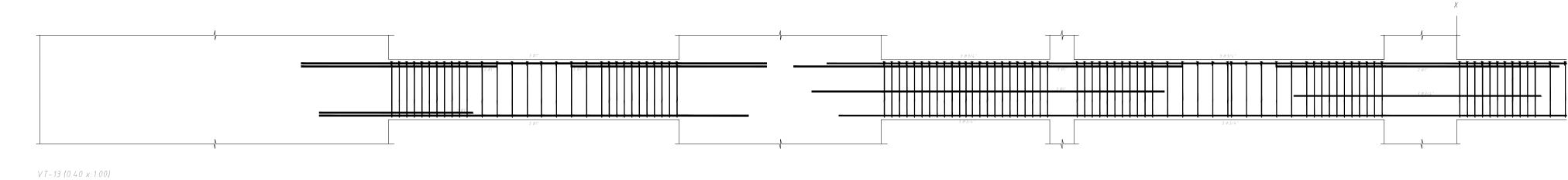

	Vigas continu	uas L > 6m
	L/h	L/f
	·	
	10	500
	11	450
	12	400
L/2	13	350
	14	300
	15	250
CONTRAFLECHA PARA VIGAS DE LUZ LIBRE MAYOR A 6 METROS	16	200
	17	175
a) LA CONTRAFLECHA SE DETERMINARÁ POR TRAMOS DE ACUERDO AL PERALTE Y LA LUZ LIBRE DE LA VIGA, CONSIDERANDO LAS RELACIONES MOSTRADAS EN LA TABLA ADJUNTA.	18	150
b) LA CONTRAFLECHA "f" SE MEDIRÁ EN EL CENTRO DEL TRAMO. c) SI L/h ES MENOR A 10 NO SE COLOCARÁ CONTRAFLECHA	19	125
d) SI L/h ES MAYOR A 20 SE DEBERÁ CONSULTAR AL PROYECTISTA	20	100

INDICACIONES PARA EL VACIADO DE LA LOSA
EL PROCEDIMIENTO CONSTRUCTIVO PARA EL VACIADO DE LA LOSA DE CONCRETO ARMADO DE TECHO Y LAS VIGAS QUE LA SOPORTAN SE REALIZARÁ DE LA SIGUIENTE MANERA:
1) SE VACIARÁN LOS PAÑOS ENTRE LAS FRANJAS DE VACIADO POSTERIOR INDICADAS EN PLANTA.
2) SE VACIARÁN LAS FRANJAS DE VACIADO POSTERIOR, POR LO MENOS 30 DÍAS DESPUÉS DE HABER FINALIZADO EL VACIADO DE LOS PAÑOS INDICADOS EN EL PUNTO (1).
3) LAS JUNTAS DE VACIADO DE VIGAS Y LOSAS EN LAS FRANJAS DE VACIADO POSTERIOR DEBERÁN SER DENTADAS.
4) SE DEBERÁ UTILIZAR UN PUENTE DE ADHERENCIA EPÓXICO DE TIEMPO DE TRABAJABILIDAD PROLONGADO.
5) EL REFUERZO SERÁ CONTINUO A TRAVÉS DE LAS FRANJAS DE VACIADO POSTERIOR Y DONDE NO HAYA REFUERZO SUPERIOR SE COLOCARÁN BASTONES SUPERIORES DE Ø3/8@20 QUE CRUCEN TRANSVERSALMENTE LA FRANJA Y PENETREN .40 EN AMBOS BORDES.
6) LA FRANJA DE VACIADO POSTERIOR TÍPICA ES DE 1 METRO DE ANCHO EN PROMEDIO, SALVO SE INDIQUE LO CONTRARIO. EN EL PLANO SE MUESTRA ACHURADA CON

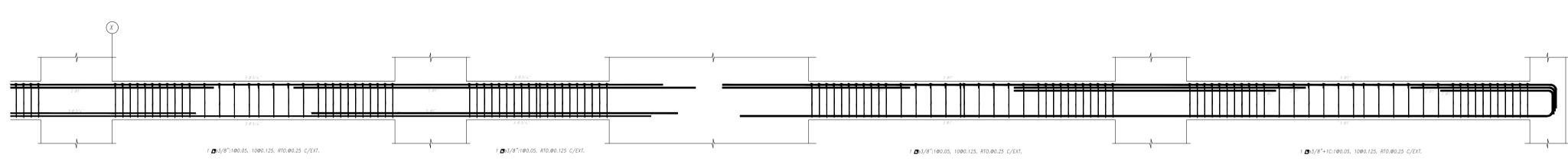
Longitud de Anclaje con Gancho (ldg)

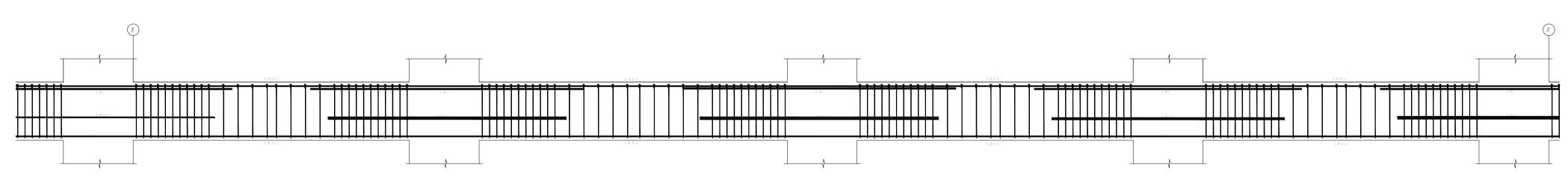
1) SE VACIARÁN LOS PAÑOS ENTRE LAS FRANJAS DE VACIADO POSTERIOR INDICADAS EN PLANTA.
2) SE VACIARÁN LAS FRANJAS DE VACIADO POSTERIOR, POR LO MENOS 30 DÍAS DESPUÉS DE HABER FINALIZADO EL VACIADO DE LOS PAÑOS INDICADOS EN EL PUNTO (1).
3) LAS JUNTAS DE VACIADO DE VIGAS Y LOSAS EN LAS FRANJAS DE VACIADO POSTERIOR DEBERÁN SER DENTADAS.
4) SE DEBERÁ UTILIZAR UN PUENTE DE ADHERENCIA EPÓXICO DE TIEMPO DE TRABAJABILIDAD PROLONGADO.
5) EL REFUERZO SERÁ CONTINUO A TRAVÉS DE LAS FRANJAS DE VACIADO POSTERIOR Y DONDE NO HAYA REFUERZO SUPERIOR SE COLOCARÁN BASTONES SUPERIORES DE ø3/8@20 QUE CRUCEN TRANSVERSALMENTE LA FRANJA Y PENETREN .40 EN AMBOS BORDES.
6) LA FRANJA DE VACIADO POSTERIOR TÍPICA ES DE 1 METRO DE ANCHO EN PROMEDIO, SALVO SE INDIQUE LO CONTRARIO. EN EL PLANO SE MUESTRA ACHURADA CON GRUPOS DE CUATRO LINEAS.
7) DE NO CONSIDERARSE LAS FRANJAS DE VACIADO, SE PRESENTARÁN FISURAS PARA LA CUALES DEBERÁ CONSIDERARSE UN SELLADO SIMPLE DE FISURAS DE ESPESOR MENOR A 2mm Y UN SELLADO CON INYECCIÓN DE MORTERO DE ALTA RESISTENCIA EN FISURAS DE MAYOR ESPESOR.

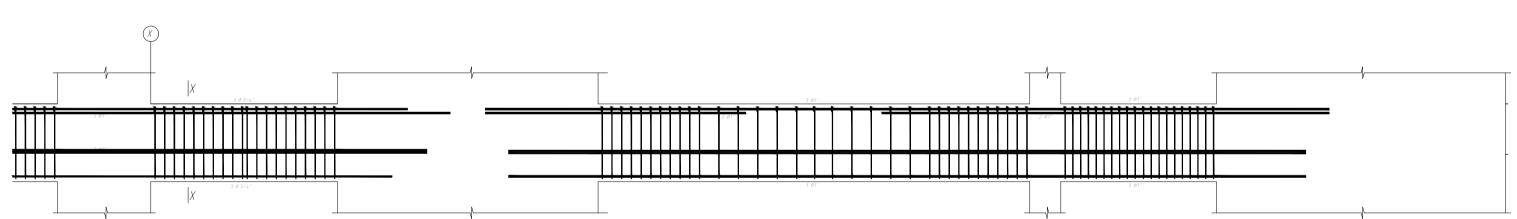
ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO SÍSMICO DE DISIPADORES HISTERÉTICOS SLB, TADAS Y DISIPADORES SÍSMICO DE FLUIDO-VISCOSO APLICADOS EN LA INFRAESTRUCTURA DE LA UNIVERSIDAD TÉCNOLÓGICO DEL PERÚ DE TACNA - 2024



E TACNA MENCIÓN


/ADA DE IVIL CON


SIDAD


UNIZ Stría

503/8":1@0.05, 10@0.125, RTO.@0.25 C/EXT. **酉**03/8":1@0.05, 10@0.125, RTO.@0.25 C/EXT. **№**3/8":1@0.05, 10@0.125, RTO.@0.25 C/EXT. **酉**53/8":1@0.05, 10@0.125, RTO.@0.25 C/EXT.

ESPECIFICACIONES TÉCNICAS CONCRETO SIMPLE (CICLOPEO) CIMIENTOS — SUBZAPATAS : f'c : MEZCLA CEMENTO/HORMIGON EN PROPORCION DE 1:10 + 30% DE PIEDRA GRANDE (MAXIMO Ø 6") SOBRECIMIENTOS: f'c : 175Kg/cm2, MEZCLA CEMENTO HS/HORMIGON EN PROPORCION SEGÚN DISEÑO DE MEZCLAS DE CONCRETO. CONCRETO ARMADO ZAPATAS f'c : 280 Kg/cm2 f'c : 280 Kg/cm2 VIGA DE CIMENTACION SOBRECIMIENTO ARMADO f'c : 175 Kg/cm2 COLUMNAS f'c : 280 Kg/cm2 MUROS DE CONTENCIÓN f'c : 280 Kg/cm2 LOSA ALIGERADA f'c : 280 Kg/cm2 COLUMNETAS Y VIGUETAS f'c : 175 Kg/cm2 **ACERO** fy : 4200 Kg/cm2 SOBRECARGAS : 400 Kg/m2 : 250 Kg/m2 CORREDORES SS.HH. Y AULAS AZOTEA : 100 Kg/m2 RECUBRIMIENTOS ZAPATAS 7.50 cm. VIGA CIMENTACION : 5.00 cm. SOBRECIMIENTO 2.50 cm. COLUMNAS Y VIGAS 4.00 cm. ESCALERA Y LOSAS : 2.50 cm. NOTAS GENERALES · Vaciar columnas amarradas a los muros en forma dentada. · Evitar empalmes y traslapes en zonas de máximo esfuerzo. Curar concreto por vía humeda. - Usar CEMENTO TIPO HS solo en el 1er nivel en elementos en contacto con el suelo - Usar cemento tipo IP en los niveles superiores. – Las juntas entre columnas y columnetas serán de sello elastomerico e=1". RECOMENDACIONES ADICIONALES: 1) No debe cimentarse sobre turba, suelo orgánico, tierra vegetal, desmonte, relleno sanitario o relleno artificial. Estos materiales inadecuados deberán ser removidos en su totalidad antes de construir la edificacion y ser reemplazados con materiales adecuados debidamente compactados. 2) En caso de que a la profundidad indicada se encuentre material suelto ó relleno profundizar excavacion por lo menos 30cm. en terreno natural y vacear falsa zapata.

3) En donde se requiera rellenar para conformar el falso piso se debera usar afirmado compactado al 95% del proctor modificado. La compactacion debera

ser con plancha vibradora en capas no mas de 20cm

VIGAS TÍPICAS III

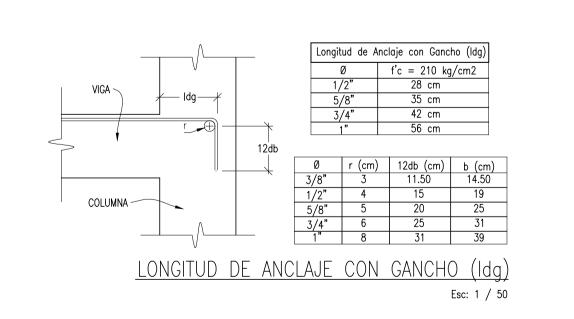
ESC: 1/50

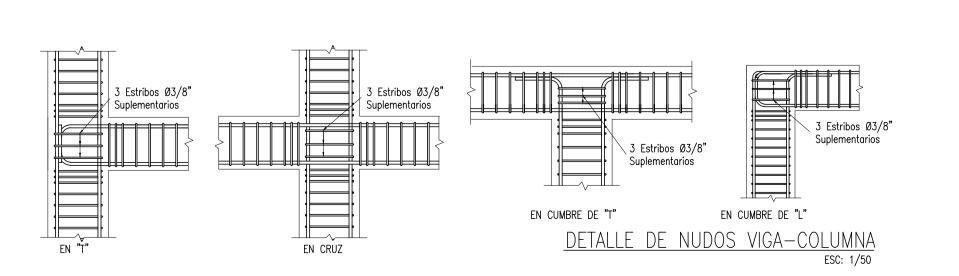
GRUPOS DE CUATRO LINEAS.

L/-	4 L/4	L/4	L/4	
	VALORES DE	- "a"		
ø	REFUERZO INFERIOR	REFUERZO	SUPERIOR	
<i>b</i>	H : CUALQUIERA	H < 0.30	H > 0.30	
3/8"	0.40 m	0.30 m	0.45 m	
1/2"	0.40 m	0.35 m	0.50 m	
5/8"	0.50 m	0.40 m	0.60 m	
3/4"	0.65 m	0.50 m	0.70 m	

- 0.50 m 0.70 m 1.20 m 1.20 m 1.25 m a.- NO EMPALMAR MAS DEL 50% DEL AREA TOTAL DE UNA MISMA SECCION. b.— EN CASO DE NO EMPALMARSE EN LAS ZONAS INDICADAS O CON LOS
- PORCENTAJES ESPECIFICADAS AUMENTAR LA LONGITUD DE EMPALME EN UN 30%. c.- PARA ALIGERADIS Y VIGAS CHATAS, EL ACERO INFERIOR SE EMPALMA SOBRE LOS APOYOS, SIENDO LA LONGITUD DEL EMPALME IGUAL A 50 CM., PARA FIERROS DE 3/8", 60 CM. PARA 1/2" Y 70 CM. PARA 5/8".

DETALLE DE EMPALME DE ACERO EN VIGAS ESC: 1 / 25


		Vigas continuas L > 6m	
		L/h	L/f
		10	500
		11	450
		12	400
	L/2	13	350
		14	300
		15	250
	CONTRAFLECHA PARA VIGAS DE LUZ LIBRE MAYOR A 6 METROS	16	200
	LA CONTRACICCUA CE DETERMINARÁ DOR TRANCO DE ACUERDO AL DERALTE VILA LUZ	17	175
)	LA CONTRAFLECHA SE DETERMINARÁ POR TRAMOS DE ACUERDO AL PERALTE Y LA LUZ LIBRE DE LA VIGA, CONSIDERANDO LAS RELACIONES MOSTRADAS EN LA TABLA ADJUNTA.	18	150
	LA CONTRAFLECHA "f" SE MEDIRÁ EN EL CENTRO DEL TRAMO. SI L/h ES MENOR A 10 NO SE COLOCARÁ CONTRAFLECHA	19	125
)	SI L/h ES MAYOR A 20 SE DEBERÁ CONSULTAR AL PROYECTISTA	20	100


INDICACIONES PARA EL VACIADO DE LA LOSA EL PROCEDIMIENTO CONSTRUCTIVO PARA EL VACIADO DE LA LOSA DE CONCRETO ARMADO DE TECHO Y LAS VIGAS QUE LA SOPORTAN SE REALIZARÁ DE LA SIGUIENTE MANERA: 1) SE VACIARÁN LOS PAÑOS ENTRE LAS FRANJAS DE VACIADO POSTERIOR INDICADAS EN PLANTA. 2) SE VACIARÁN LAS FRANJAS DE VACIADO POSTERIOR, POR LO MENOS 30 DÍAS DESPUÉS DE HABER FINALIZADO EL VACIADO DE LOS PAÑOS INDICADOS EN EL PUNTO (1). 3) LAS JUNTAS DE VACIADO DE VIGAS Y LOSAS EN LAS FRANJAS DE VACIADO POSTERIOR DEBERÁN SER DENTADAS. 4) SE DEBERÁ UTILIZAR UN PUENTE DE ADHERENCIA EPÓXICO DE TIEMPO DE TRABAJABILIDAD PROLONGADO. 5) EL REFUERZO SERÁ CONTINUO A TRAVÉS DE LAS FRANJAS DE VACIADO POSTERIOR Y DONDE NO HAYA REFUERZO SUPERIOR SE COLOCARÁN BASTONES SUPERIORES DE Ø3/8@20 QUE CRUCEN TRANSVERSALMENTE LA FRANJA Y PENETREN .40 EN AMBOS BORDES.		
MANERA: 1) SE VACIARÁN LOS PAÑOS ENTRE LAS FRANJAS DE VACIADO POSTERIOR INDICADAS EN PLANTA. 2) SE VACIARÁN LAS FRANJAS DE VACIADO POSTERIOR, POR LO MENOS 30 DÍAS DESPUÉS DE HABER FINALIZADO EL VACIADO DE LOS PAÑOS INDICADOS EN EL PUNTO (1). 3) LAS JUNTAS DE VACIADO DE VIGAS Y LOSAS EN LAS FRANJAS DE VACIADO POSTERIOR DEBERÁN SER DENTADAS. 4) SE DEBERÁ UTILIZAR UN PUENTE DE ADHERENCIA EPÓXICO DE TIEMPO DE TRABAJABILIDAD PROLONGADO. 5) EL REFUERZO SERÁ CONTINUO A TRAVÉS DE LAS FRANJAS DE VACIADO POSTERIOR Y DONDE NO HAYA REFUERZO SUPERIOR SE COLOCARÁN BASTONES SUPERIORES	INDICACIONES PARA EL VACIADO DE LA LOSA	
2) SE VACIARÁN LAS FRANJAS DE VACIADO POSTERIOR, POR LO MENOS 30 DÍAS DESPUÉS DE HABER FINALIZADO EL VACIADO DE LOS PAÑOS INDICADOS EN EL PUNTO (1). 3) LAS JUNTAS DE VACIADO DE VIGAS Y LOSAS EN LAS FRANJAS DE VACIADO POSTERIOR DEBERÁN SER DENTADAS. 4) SE DEBERÁ UTILIZAR UN PUENTE DE ADHERENCIA EPÓXICO DE TIEMPO DE TRABAJABILIDAD PROLONGADO. 5) EL REFUERZO SERÁ CONTINUO A TRAVÉS DE LAS FRANJAS DE VACIADO POSTERIOR Y DONDE NO HAYA REFUERZO SUPERIOR SE COLOCARÁN BASTONES SUPERIORES		EALIZARÁ DE LA SIGUIENTE
 (1). 3) LAS JUNTAS DE VACIADO DE VIGAS Y LOSAS EN LAS FRANJAS DE VACIADO POSTERIOR DEBERÁN SER DENTADAS. 4) SE DEBERÁ UTILIZAR UN PUENTE DE ADHERENCIA EPÓXICO DE TIEMPO DE TRABAJABILIDAD PROLONGADO. 5) EL REFUERZO SERÁ CONTINUO A TRAVÉS DE LAS FRANJAS DE VACIADO POSTERIOR Y DONDE NO HAYA REFUERZO SUPERIOR SE COLOCARÁN BASTONES SUPERIORES 	1) SE VACIARÁN LOS PAÑOS ENTRE LAS FRANJAS DE VACIADO POSTERIOR INDICADAS EN PLANTA.	
4) SE DEBERÁ UTILIZAR UN PUENTE DE ADHERENCIA EPÓXICO DE TIEMPO DE TRABAJABILIDAD PROLONGADO. 5) EL REFUERZO SERÁ CONTINUO A TRAVÉS DE LAS FRANJAS DE VACIADO POSTERIOR Y DONDE NO HAYA REFUERZO SUPERIOR SE COLOCARÁN BASTONES SUPERIORES		OS INDICADOS EN EL PUNTO
5) EL REFUERZO SERÁ CONTINUO A TRAVÉS DE LAS FRANJAS DE VACIADO POSTERIOR Y DONDE NO HAYA REFUERZO SUPERIOR SE COLOCARÁN BASTONES SUPERIORES	3) LAS JUNTAS DE VACIADO DE VIGAS Y LOSAS EN LAS FRANJAS DE VACIADO POSTERIOR DEBERÁN SER DENTADAS.	
	4) SE DEBERÁ UTILIZAR UN PUENTE DE ADHERENCIA EPÓXICO DE TIEMPO DE TRABAJABILIDAD PROLONGADO.	
	$^{\prime}$	ARÁN BASTONES SUPERIORES

6) LA FRANJA DE VACIADO POSTERIOR TÍPICA ES DE 1 METRO DE ANCHO EN PROMEDIO, SALVO SE INDIQUE LO CONTRARIO. EN EL PLANO SE MUESTRA ACHURADA CON

7) DE NO CONSIDERARSE LAS FRANJAS DE VACIADO, SE PRESENTARÁN FISURAS PARA LA CUALES DEBERÁ CONSIDERARSE UN SELLADO SIMPLE DE FISURAS DE ESPESOR

MENOR A 2mm Y UN SELLADO CON INYECCIÓN DE MORTERO DE ALTA RESISTENCIA EN FISURAS DE MAYOR ESPESOR.

PARAME		DISEÑO SIS		STENTES
PARAMETROS Factor de Uso e Imp Tipo de su	Zona : ortancia :	Z = 0.45 U = 1.50 Grava biel	` '	uy densa
Factor de Gravedad :	Terreno :	S1 = 1.0 Tp= 0.40 TL= 2.50 g = 9.81	seg.	ido)
COEFICIENTE R DX:	DE REDUCCIO		STRUCTURALE	S Y PORTICOS
R DY:		6 (MUROS E	STRUCTURALE	S)
MODOS DE VI T1: T2: T3: FUERZA CORT Vx: Vy:		1.063 seg 0.784 seg 0.568 seg BASE ESTÁTICA 1582.65 1 2503.50	i I λ: Γnf	
FUERZA CORT Vx: Vy:	ANTE EN LA	BASE DINÁMICO 1563.06 1 2342.60	Γnf	
DESPLAZAMIEN	ITOS Y DERIV	AS		
PISO	Desplo X-X	ızamientos Y—Y	Deri X-X	vas Y-Y
10 9 8 7 6 5 4 3 2	3.75 3.49 3.18 2.84 2.47 2.06 1.63 1.20 0.77 0.39	3.81 3.42 3.02 2.61 2.19 1.78 1.38 1.00 0.66 0.35	0.0042 0.0048 0.0053 0.0058 0.0062 0.0064 0.0065 0.0063 0.0056	0.0050 0.0052 0.0053 0.0053 0.0053 0.0051 0.0048 0.0044 0.0039 0.0033

"ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO SÍSMICO DE DISIPADORES HISTERÉTICOS SLB, TADAS Y DISIPADORES SÍSMICOS DE FLUIDO-VISCOSO

APLICADOS EN LA INFRAESTRUCTURA DE LA UNIVERSIDAD TECNOLÓGICA DEL PERÚ DE TACNA - 2024"

ESPECIALIDAD: ESTRUCTURAS

PLANO:

VIGAS TÍPICAS III

ESCALA: INDICADA SET-2024

> PROFESIONAL DE POSTGRADO

APELLIDOS: ING. HERNÁN GIAN

> PIERRE OROCOLLO CAUNA

